An on-line task modification method for singularity avoidance of robot manipulators

In this paper, we present an on-line task modification method (OTMM) to realize singularity avoidance for nonredundant and redundant manipulators at the velocity level. The method introduces a correction vector, constructed from the task velocity and the singular vector corresponding to the minimum singular value, into the task velocity. The performance is simply affected by the choice of the lower limit of the minimum singular value and a scalar adjusting function, which is monotone with respect to the minimum singular value. The method makes unnecessary avoiding the singularity point by off-line path planning for nonredundant or redundant manipulators, and the effort to check whether the singularity is escapable for redundant manipulators. The simulation results show the effectiveness of the OTMM for on-line singularity avoidance in manipulator motion control.

[1]  Andrew K. C. Wong,et al.  A singularities prevention approach for redundant robot manipulators , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[2]  Stefano Chiaverini,et al.  A damped least-squares solution to redundancy resolution , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[3]  Tzong-Shi Liu,et al.  Singularity of robotic kinematics: A differential motion approach , 1990 .

[4]  Peter S. Donelan Singularity-theoretic methods in robot kinematics , 2007, Robotica.

[5]  T. Yoshikawa,et al.  Task-Priority Based Redundancy Control of Robot Manipulators , 1987 .

[6]  Ignacy Duleba,et al.  Modified Jacobian method of transversal passing through the smallest deficiency singularities for robot manipulators , 2002, Robotica.

[7]  Andrew K. C. Wong,et al.  An efficient local approach for the path generation of robot manipulators , 1990, J. Field Robotics.

[8]  Charles W. Wampler,et al.  Manipulator Inverse Kinematic Solutions Based on Vector Formulations and Damped Least-Squares Methods , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[9]  Yu-Che Chen,et al.  Instability of pseudoinverse acceleration control of redundant mechanisms , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[10]  Fan-Tien Cheng,et al.  Multiple-goal priority considerations of redundant manipulators , 1997, Robotica.

[11]  J. Sasiadek,et al.  Modified Jacobian method of transversal passing through singularities of nonredundant manipulators , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[12]  Shyi-Ming Chen,et al.  Comments on "A Petri net model for temporal knowledge representation and reasoning" , 1997, IEEE Trans. Syst. Man Cybern. Part B.

[13]  Stefano Chiaverini,et al.  A solution to the singularity problem for six-joint manipulators , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[14]  A. A. Maciejewski Real-time SVD for the control of redundant robotic manipulators , 1989, IEEE 1989 International Conference on Systems Engineering.

[15]  Robert Muszynski,et al.  Singularities of Nonredundant Robot Kinematics , 1997, Int. J. Robotics Res..

[16]  Robert Muszynski,et al.  Singular inverse kinematic problem for robotic manipulators: a normal form approach , 1998, IEEE Trans. Robotics Autom..

[17]  Miomir Vukobratović,et al.  An Experimental Study of Resolved Acceleration Control of Robots at Singularities: Damped Least-Squares Approach , 1997 .

[18]  Fan-Tien Cheng,et al.  Study and resolution of singularities for a 6-DOF PUMA manipulator , 1995, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century.

[19]  Yu-Che Chen,et al.  Escapability of singular configuration for redundant manipulators via self-motion , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[20]  Yoshihiko Nakamura,et al.  Inverse kinematic solutions with singularity robustness for robot manipulator control , 1986 .

[21]  Junku Yuh,et al.  A real-time approach for singularity avoidance in resolved motion rate control of robotic manipulators , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[22]  Nazareth Bedrossian,et al.  Classification of singular configurations for redundant manipulators , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[23]  Anthony A. Maciejewski,et al.  The Singular Value Decomposition: Computation and Applications to Robotics , 1989, Int. J. Robotics Res..

[24]  Jindong Tan,et al.  A singularity-free motion control algorithm for robot manipulators - a hybrid system approach , 2004, Autom..

[25]  Stefano Chiaverini,et al.  Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators , 1997, IEEE Trans. Robotics Autom..

[26]  E. Aboaf,et al.  Living with the singularity of robot wrists , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[27]  Vasyl Molebny,et al.  Damped least‐squares approach for point‐source corneal topography , 2009, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.