Experimental and modeling study of solid oxide fuel cell operating with syngas fuel

[1]  Suttichai Assabumrungrat,et al.  Thermodynamic analysis of carbon formation in a solid oxide fuel cell with a direct internal reformer fuelled by methanol , 2005 .

[2]  S. Assabumrungrat,et al.  Thermodynamic analysis for a solid oxide fuel cell with direct internal reforming fueled by ethanol , 2004 .

[3]  C. Adjiman,et al.  Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance , 2004 .

[4]  B. Haberman,et al.  Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell , 2004 .

[5]  Nigel P. Brandon,et al.  The impact of wood-derived gasification gases on Ni-CGO anodes in intermediate temperature solid oxide fuel cells , 2004 .

[6]  M. Chyu,et al.  Simulation of the chemical/electrochemical reactions and heat/mass transfer for a tubular SOFC in a stack , 2003 .

[7]  A. Virkar,et al.  Fuel Composition and Diluent Effect on Gas Transport and Performance of Anode-Supported SOFCs , 2003 .

[8]  Frank A. Coutelieris,et al.  Fuel options for solid oxide fuel cells: A thermodynamic analysis , 2003 .

[9]  Ryuji Kikuchi,et al.  Fuel flexibility in power generation by solid oxide fuel cells , 2002 .

[10]  Ellen Ivers-Tiffée,et al.  Oxidation of H2, CO and methane in SOFCs with Ni/YSZ-cermet anodes , 2002 .

[11]  Hee Chun Lim,et al.  Carbon deposition and cell performance of Ni-YSZ anode support SOFC with methane fuel , 2002 .

[12]  Ryuji Kikuchi,et al.  Current-voltage characteristics and impedance analysis of solid oxide fuel cells for mixed H2 and CO gases , 2002 .

[13]  Khaliq Ahmed,et al.  Approach to equilibrium of the water-gas shift reaction on a Ni/zirconia anode under solid oxide fuel-cell conditions , 2001 .

[14]  Tohru Kato,et al.  Numerical analysis of output characteristics of tubular SOFC with internal reformer , 2001 .

[15]  S. Jiang,et al.  Resistance Measurement in Solid Oxide Fuel Cells , 2001 .

[16]  P. Paul,et al.  Biomass derived producer gas as a reciprocating engine fuel—an experimental analysis , 2001 .

[17]  K. Hassmann SOFC Power Plants, the Siemens‐Westinghouse Approach , 2001 .

[18]  A. Ioselevich,et al.  Phenomenological Theory of Solid Oxide Fuel Cell Anode , 2001 .

[19]  S. Chan,et al.  A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness , 2001 .

[20]  Kenichi Kawamura,et al.  Influence of the coexisting gases on the electrochemical reaction rates between 873 and 1173 K in a CH4–H2O/Pt/YSZ system , 2000 .

[21]  Paola Costamagna,et al.  Modeling of Solid Oxide Heat Exchanger Integrated Stacks and Simulation at High Fuel Utilization , 1998 .

[22]  Andrew Dicks,et al.  Catalytic aspects of the steam reforming of hydrocarbons in internal reforming fuel cells , 1997 .

[23]  G. Froment,et al.  Filamentous carbon formation and gasification: Thermodynamics, driving force, nucleation, and steady-state growth , 1997 .

[24]  Clement Kleinstreuer,et al.  Engineering fluid dynamics , 1997 .

[25]  R. Herbin,et al.  Three-dimensional numerical simulation for various geometries of solid oxide fuel cells , 1996 .

[26]  E. Achenbach Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack , 1994 .

[27]  Koichi Eguchi,et al.  Effects of Anode Material and Fuel on Anodic Reaction of Solid Oxide Fuel Cells , 1992 .

[28]  H. Tagawa,et al.  Oxygen chemical potential profile in a solid oxide fuel cell and simulation of electrochemical performance , 1990 .

[29]  F. R. Foulkes,et al.  Fuel Cell Handbook , 1989 .

[30]  D. R. Crow Principles and Applications of Electrochemistry , 1974 .