Discriminative Tensor Sparse Coding for Image Classification

A novel approach to learn a discriminative dictionary over a tensor sparse model is presented. A structural incoherence constraint between dictionary atoms from different classes is introduced to promote discriminating information into the dictionary. The incoherence term encourages dictionary atoms to be as independent as possible. In addition, we incorporate classification error into the objective function of dictionary learning. The dictionary is learned in a supervised setting to make it useful for classification. A linear multi-class classifier and the dictionary are learned simultaneously during the training phase. Our approach is evaluated on three types of public databases, including texture, digit, and face databases. Experimental results demonstrate the effectiveness of our approach.

[1]  Stephen J. Maybank,et al.  Human Action Recognition under Log-Euclidean Riemannian Metric , 2009, ACCV.

[2]  Tamir Hazan,et al.  Sparse image coding using a 3D non-negative tensor factorization , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[3]  Guillermo Sapiro,et al.  Classification and clustering via dictionary learning with structured incoherence and shared features , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[4]  A. Martínez,et al.  The AR face databasae , 1998 .

[5]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[6]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[7]  Fatih Murat Porikli,et al.  Region Covariance: A Fast Descriptor for Detection and Classification , 2006, ECCV.

[8]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[9]  Larry S. Davis,et al.  Online Semi-Supervised Discriminative Dictionary Learning for Sparse Representation , 2012, ACCV.

[10]  Fatih Murat Porikli,et al.  Human Detection via Classification on Riemannian Manifolds , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[11]  Vassilios Morellas,et al.  Positive definite dictionary learning for region covariances , 2011, 2011 International Conference on Computer Vision.

[12]  Guillermo Sapiro,et al.  Discriminative learned dictionaries for local image analysis , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Larry S. Davis,et al.  Learning Structured Low-Rank Representations for Image Classification , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Thomas S. Huang,et al.  Supervised translation-invariant sparse coding , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  Vassilios Morellas,et al.  Tensor Sparse Coding for Region Covariances , 2010, ECCV.

[16]  Trygve Randen,et al.  Filtering for Texture Classification: A Comparative Study , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  TuzelOncel,et al.  Pedestrian Detection via Classification on Riemannian Manifolds , 2008 .

[18]  Larry S. Davis,et al.  Learning a discriminative dictionary for sparse coding via label consistent K-SVD , 2011, CVPR 2011.

[19]  Brian C. Lovell,et al.  Sparse Coding and Dictionary Learning for Symmetric Positive Definite Matrices: A Kernel Approach , 2012, ECCV.

[20]  Tai Sing Lee,et al.  Image Representation Using 2D Gabor Wavelets , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Aleix M. Martinez,et al.  The AR face database , 1998 .

[22]  Gene H. Golub,et al.  Tikhonov Regularization and Total Least Squares , 1999, SIAM J. Matrix Anal. Appl..

[23]  Fatih Murat Porikli,et al.  Pedestrian Detection via Classification on Riemannian Manifolds , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Yu-Chiang Frank Wang,et al.  Low-rank matrix recovery with structural incoherence for robust face recognition , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[25]  Guillermo Sapiro,et al.  Supervised Dictionary Learning , 2008, NIPS.

[26]  Inderjit S. Dhillon,et al.  Information-theoretic metric learning , 2006, ICML '07.

[27]  Nenghai Yu,et al.  Non-negative low rank and sparse graph for semi-supervised learning , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[28]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.