Matching Modulo Associativity and Idempotency Is NP-Complete

We show that AI-matching (AI denotes the theory of an associative and idempotent function symbol), which is solving matching word equations in free idempotent semigroups, is NP-complete. Note: full version of the paper appears as [8].

[1]  Paliath Narendran,et al.  NP-Completeness of the Set Unification and Matching Problems , 1986, CADE.

[2]  Franz Baader Unification in varieties of idempotent semigroups , 1987 .

[3]  Franz Baader,et al.  Unification in the Union of Disjoint Equational Theories: Combining Decision Procedures , 1992, CADE.

[4]  J. Siekmann,et al.  A Noetherian and confluent rewrite system for idempotent semigroups , 1982 .

[5]  Karel Pala,et al.  Prosody Modelling for Syllable-Based Speech Synthesis , 1998 .

[6]  Ivana Cerná,et al.  Pattern Equations and Equations with Stuttering , 1999, SOFSEM.

[7]  Friedrich Otto,et al.  String-Rewriting Systems , 1993, Text and Monographs in Computer Science.

[8]  Rasmus Pagh A New Trade-Off for Deterministic Dictionaries , 2000, SWAT.

[9]  Nabil H. Mustafa,et al.  Democratic Consensus and the Local Majority Rule , 2000 .

[10]  O. Klíma,et al.  Complexity Issues of the Pattern Equations in Idempotent Semigroups , 1999 .

[11]  Anna Philippou,et al.  Tools and Algorithms for the Construction and Analysis of Systems , 2018, Lecture Notes in Computer Science.

[12]  Klaus U. Schulz,et al.  Makanin's Algorithm for Word Equations - Two Improvements and a Generalization , 1990, IWWERT.

[13]  Ulrich Kohlenbach,et al.  Effective Uniform Bounds on the Krasnoselski-Mann Iteration , 2000 .

[14]  Stefan Dantchev,et al.  A Tough Nut for Tree Resolution , 2000 .

[15]  Ivan Damgård,et al.  Efficient Protocols based on Probabilistic Encryption using Composite Degree Residue Classes , 2000, IACR Cryptol. ePrint Arch..

[16]  Jiri Srba,et al.  Matching Modulo Associativity and Idempotency is NP-Complete , 2000 .

[17]  J. Green,et al.  On semi-groups in which xr = x , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.

[18]  Ivan Damgård,et al.  Improved Non-committing Encryption Schemes Based on a General Complexity Assumption , 2000, CRYPTO.

[19]  Ivan Kopeček Automatic segmentation into syllable segments , 1998 .

[20]  G. Makanin The Problem of Solvability of Equations in a Free Semigroup , 1977 .

[21]  Dominique Perrin Equations in Words , 1989 .