Greasing Membrane Fusion and Fission Machineries

Biological membrane fusion is a local‐point event, extremely fast, and under strict control. Proteins are responsible for the mutual recognition of the fusion partners and for the initiation of biomembrane fusion, and thus determine where and when fusion occurs. However, the central event during membrane fusion is the merger of two membranes, which requires a transient reorganization of membrane lipids into highly curved fusion intermediates. This review focuses on the potential role of lipids in the generation of membrane curvature, and thus in the regulation of membrane fusion and fission.

[1]  S. Schmid,et al.  Garrotes, Springs, Ratchets, and Whips: Putting Dynamin Models to the Test , 2000, Traffic.

[2]  J. Hörber,et al.  Sphingolipid–Cholesterol Rafts Diffuse as Small Entities in the Plasma Membrane of Mammalian Cells , 2000, The Journal of cell biology.

[3]  T. Stegmann,et al.  Membrane Perturbation and Fusion Pore Formation in Influenza Hemagglutinin-mediated Membrane Fusion , 2000, The Journal of Biological Chemistry.

[4]  F. Maxfield,et al.  Role of Membrane Organization and Membrane Domains in Endocytic Lipid Trafficking , 2000, Traffic.

[5]  P. Kinnunen,et al.  Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes. , 2000, Biophysical journal.

[6]  J. Bentz,et al.  Minimal aggregate size and minimal fusion unit for the first fusion pore of influenza hemagglutinin-mediated membrane fusion. , 2000, Biophysical journal.

[7]  T.,et al.  Lipid Polymorphism and Membrane Function , 2000 .

[8]  J. Exton Regulation of phospholipase D , 2002, Biochimica et biophysica acta.

[9]  T. Graham,et al.  Role for Drs2p, a P-Type Atpase and Potential Aminophospholipid Translocase, in Yeast Late Golgi Function , 1999, The Journal of cell biology.

[10]  G. Melikyan,et al.  Hemifusion between cells expressing hemagglutinin of influenza virus and planar membranes can precede the formation of fusion pores that subsequently fully enlarge. , 1999, Biophysical journal.

[11]  S. Spanò,et al.  CtBP/BARS induces fission of Golgi membranes by acylating lysophosphatidic acid , 1999, Nature.

[12]  A. Podtelejnikov,et al.  Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid , 1999, Nature.

[13]  L. Brodin,et al.  Endophilin/SH3p4 Is Required for the Transition from Early to Late Stages in Clathrin-Mediated Synaptic Vesicle Endocytosis , 1999, Neuron.

[14]  M. Luo,et al.  Yeast Sec14p deficient in phosphatidylinositol transfer activity is functional in vivo. , 1999, Molecular cell.

[15]  F. Wieland,et al.  Mechanisms of vesicle formation: insights from the COP system. , 1999, Current opinion in cell biology.

[16]  Pietro De Camilli,et al.  Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis , 1999, Nature Cell Biology.

[17]  A. Dautry‐Varsat,et al.  Enhancement of endocytosis due to aminophospholipid transport across the plasma membrane of living cells. , 1999, The American journal of physiology.

[18]  J. Rothman,et al.  Coupling of Coat Assembly and Vesicle Budding to Packaging of Putative Cargo Receptors , 1999, Cell.

[19]  T. Südhof,et al.  Membrane fusion and exocytosis. , 1999, Annual review of biochemistry.

[20]  D. Siegel The modified stalk mechanism of lamellar/inverted phase transitions and its implications for membrane fusion. , 1999, Biophysical journal.

[21]  B. Lentz,et al.  Poly(ethylene glycol) (PEG)-mediated fusion between pure lipid bilayers: a mechanism in common with viral fusion and secretory vesicle release? , 1999, Molecular membrane biology.

[22]  Jens R. Coorssen,et al.  Biochemical and Functional Studies of Cortical Vesicle Fusion: The SNARE Complex and Ca2+ Sensitivity , 1998, The Journal of cell biology.

[23]  V. Bankaitis,et al.  Phosphatidylinositol transfer proteins: the long and winding road to physiological function. , 1998, Trends in cell biology.

[24]  R. Epand Lipid polymorphism and protein-lipid interactions. , 1998, Biochimica et biophysica acta.

[25]  K. Simons,et al.  The differential miscibility of lipids as the basis for the formation of functional membrane rafts. , 1998, Biochimica et biophysica acta.

[26]  T. Morimoto,et al.  An essential role for the phosphatidylinositol transfer protein in the scission of coatomer-coated vesicles from the trans-Golgi network. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[27]  B. Lentz,et al.  Secretory and viral fusion may share mechanistic events with fusion between curved lipid bilayers. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[28]  N. Janes,et al.  Tracking phospholipid populations in polymorphism by sideband analyses of 31P magic angle spinning NMR. , 1998, Biophysical journal.

[29]  J. Katzenellenbogen,et al.  Evidence that phospholipase A2 activity is required for Golgi complex and trans Golgi network membrane tubulation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[30]  J. Hinshaw,et al.  Dynamin Undergoes a GTP-Dependent Conformational Change Causing Vesiculation , 1998, Cell.

[31]  F. Maxfield,et al.  Sphingomyelinase Treatment Induces ATP-independent Endocytosis , 1998, The Journal of cell biology.

[32]  J. Zimmerberg,et al.  Flickering fusion pores comparable with initial exocytotic pores occur in protein-free phospholipid bilayers. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[33]  B. Kruijff Lipid polymorphism and biomembrane function , 1997 .

[34]  R. Epand,et al.  Structural study of the relationship between the rate of membrane fusion and the ability of the fusion peptide of influenza virus to perturb bilayers. , 1997, Biochemistry.

[35]  Koert N. J. Burger Chapter 11 Morphology of Membrane Fusion , 1997 .

[36]  R. Epand Lipid polymorphism and membrane properties , 1997 .

[37]  J. R. Monck,et al.  The fusion pore and mechanisms of biological membrane fusion. , 1996, Current opinion in cell biology.

[38]  L. Chernomordik Non-bilayer lipids and biological fusion intermediates. , 1996, Chemistry and physics of lipids.

[39]  S. Cockcroft ARF-regulated phospholipase D: a potential role in membrane traffic. , 1996, Chemistry and physics of lipids.

[40]  T. Shangguan,et al.  Influenza-virus-liposome lipid mixing is leaky and largely insensitive to the material properties of the target membrane. , 1996, Biochemistry.

[41]  J. Rothman,et al.  Protein Sorting by Transport Vesicles , 1996, Science.

[42]  R. Schekman,et al.  Coat Proteins and Vesicle Budding , 1996, Science.

[43]  K. Wirtz,et al.  A role for phosphatidylinositol transfer protein in secretory vesicle formation , 1995, Nature.

[44]  H. Döbereiner,et al.  Influence of transbilayer area asymmetry on the morphology of large unilamellar vesicles. , 1995, Biophysical journal.

[45]  M. Vidal,et al.  In Vitro Fusion of Reticulocyte Endocytic Vesicles with Liposomes (*) , 1995, The Journal of Biological Chemistry.

[46]  G. Lindblom,et al.  Lipid extracts from membranes of Acholeplasma laidlawii A grown with different fatty acids have a nearly constant spontaneous curvature. , 1995, Biochimica et biophysica acta.

[47]  J. Zimmerberg,et al.  Control of baculovirus gp64-induced syncytium formation by membrane lipid composition , 1995, Journal of virology.

[48]  H. Nishio,et al.  Ca(2+)-independent fusion of secretory granules with phospholipase A2-treated plasma membranes in vitro. , 1995, The Biochemical journal.

[49]  E. Sackmann,et al.  Budding, fission and domain formation in mixed lipid vesicles induced by lateral phase separation and macromolecular condensation. , 1995, Molecular membrane biology.

[50]  S. Schmid,et al.  The emergence of clathrin-independent pinocytic pathways. , 1995, Current opinion in cell biology.

[51]  W. Almers,et al.  Structure and function of fusion pores in exocytosis and ectoplasmic membrane fusion. , 1995, Current opinion in cell biology.

[52]  C. Lavoie,et al.  Modulation of GTP-dependent fusion by linoleic and arachidonic acid in derivatives of rough endoplasmic reticulum from rat liver. , 1994, Biochimica et biophysica acta.

[53]  D. Alford,et al.  Fusion of influenza virus with sialic acid-bearing target membranes. , 1994, Biochemistry.

[54]  Judith M. White,et al.  Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion , 1994, Cell.

[55]  D. Siegel,et al.  Energetics of intermediates in membrane fusion: comparison of stalk and inverted micellar intermediate mechanisms. , 1993, Biophysical journal.

[56]  E. Brown,et al.  Inhibition of endosome fusion by phospholipase A2 (PLA2) inhibitors points to a role for PLA2 in endocytosis. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[57]  J. Käs,et al.  Budding and fission of vesicles. , 1993, Biophysical journal.

[58]  J. Killian,et al.  Polymorphic regulation of membrane phospholipid composition in Escherichia coli. , 1993, The Journal of biological chemistry.

[59]  R. Lipowsky Domain-induced budding of fluid membranes. , 1993, Biophysical journal.

[60]  J. Israelachvili,et al.  Forces between phospholipid bilayers and relationship to membrane fusion. , 1993, Methods in enzymology.

[61]  C. Creutz The annexins and exocytosis. , 1992, Science.

[62]  P. Devaux,et al.  Shape changes of giant liposomes induced by an asymmetric transmembrane distribution of phospholipids. , 1992, Biophysical journal.

[63]  P. Cullis,et al.  Transbilayer transport of phosphatidic acid in response to transmembrane pH gradients. , 1991, Biochemistry.

[64]  Shlomo Nir,et al.  Molecular mechanisms of calcium-induced membrane fusion , 1990, Journal of bioenergetics and biomembranes.

[65]  R. Doms,et al.  Protein-mediated membrane fusion. , 1989, Annual review of biophysics and biophysical chemistry.

[66]  D. Chandler Chapter 6 Exocytosis and Endocytosis: Membrane Fusion Events Captured in Rapidly Frozen Cells , 1988 .

[67]  J. Boggs,et al.  Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function. , 1987, Biochimica et biophysica acta.

[68]  J. Bentz,et al.  Membrane fusion: Kinetics and mechanisms , 1987 .

[69]  P. Cullis,et al.  Lipid polymorphism and the roles of lipids in membranes. , 1986, Chemistry and physics of lipids.

[70]  A. Verkleij ROLE OF LIPIDS DURING FUSION OF MODEL AND BIOLOGICAL MEMBRANES , 1986 .

[71]  B. Roelofsen,et al.  Lipid molecular shape affects erythrocyte morphology: a study involving replacement of native phosphatidylcholine with different species followed by treatment of cells with sphingomyelinase C or phospholipase A2 , 1985, The Journal of cell biology.

[72]  Anthony N. Martonosi,et al.  The Enzymes of Biological Membranes , 1985, Springer US.

[73]  Kozlov Mm,et al.  On the Theory of Membrane Fusion. The Stalk Mechanism , 1984 .

[74]  J E Ferrell,et al.  Phosphoinositide metabolism and the morphology of human erythrocytes , 1984, The Journal of cell biology.

[75]  M. Kozlov,et al.  On the theory of membrane fusion. The stalk mechanism. , 1984, General physiology and biophysics.

[76]  P. Cullis,et al.  Polymorphic phase preferences of phosphatidic acid: A 31P and 2H NMR study. , 1983, Biochemical and biophysical research communications.

[77]  B. de Kruijff,et al.  Divalent cations and chlorpromazine can induce non-bilayer structures in phosphatidic acid-containing model membranes. , 1982, Biochimica et biophysica acta.

[78]  P. Cullis,et al.  Stabilization of bilayer structure for unsaturated phosphatidylethanolamines by detergents. , 1982, Biochimica et biophysica acta.

[79]  C. Creutz cis-Unsaturated fatty acids induce the fusion of chromaffin granules aggregated by synexin , 1981, The Journal of cell biology.

[80]  S. Marčelja,et al.  Physical principles of membrane organization , 1980, Quarterly Reviews of Biophysics.

[81]  A. Verkleij,et al.  Fusion of phospholipid vesicles in association with the appearance of lipidic particles as visualized by freeze fracturing. , 1979, Biochimica et biophysica acta.

[82]  A. Verkleij,et al.  Lipidic intramembranous particles , 1979, Nature.

[83]  M. Dennis,et al.  Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release , 1979, The Journal of cell biology.

[84]  P. Cullis,et al.  Effects of fusogenic agent on membrane structure of erythrocyte ghosts and the mechanism of membrane fusion , 1978, Nature.

[85]  M. Sheetz,et al.  Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[86]  J. Lucy,et al.  Mechanisms of Chemically Induced Cell Fusion , 1974 .