Comparisons of two meshfree local point interpolation methods for structural analyses

Abstract As truly meshless methods, the local point interpolation method (LPIM) and the local radial point interpolation method (LR-PIM), are based on the point interpolations and local weak forms integrated in a local domain of very simple shape. LPIM and LR-PIM are examined and compared with each other. They are also compared with the established FEM and the meshless local Petrov-Galerkin (MLPG) method. The numerical implementations of these two methods are discussed in detail. Parameters that influence the performance of them are detailedly studied. The convergence and efficiency of them are thoroughly investigated. LPIM and LR-PIM formulations are developed for structural analyses of 2-D elasto-dynamic problems and 1-D Timoshenko beam problems in the first time. It is found that LPIM and LR-PIM are very easy to implement, and very efficient obtaining numerical solutions to problems of computational mechanics.

[1]  Guirong Liu,et al.  A LOCAL RADIAL POINT INTERPOLATION METHOD (LRPIM) FOR FREE VIBRATION ANALYSES OF 2-D SOLIDS , 2001 .

[2]  YuanTong Gu,et al.  Meshless local Petrov–Galerkin (MLPG) method in combination with finite element and boundary element approaches , 2000 .

[3]  YuanTong Gu,et al.  Coupling of element free Galerkin and hybrid boundary element methods using modified variational formulation , 2000 .

[4]  K. Bathe,et al.  The method of finite spheres , 2000 .

[5]  Holger Wendland,et al.  Error Estimates for Interpolation by Compactly Supported Radial Basis Functions of Minimal Degree , 1998 .

[6]  M. Petyt,et al.  Introduction to Finite Element Vibration Analysis , 2016 .

[7]  S. Atluri,et al.  A meshless local boundary integral equation (LBIE) method for solving nonlinear problems , 1998 .

[8]  Hyun Gyu Kim,et al.  A critical assessment of the truly Meshless Local Petrov-Galerkin (MLPG), and Local Boundary Integral Equation (LBIE) methods , 1999 .

[9]  YuanTong Gu,et al.  A meshless local Petrov-Galerkin (MLPG) method for free and forced vibration analyses for solids , 2001 .

[10]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[11]  Peter Lancaster,et al.  Curve and surface fitting - an introduction , 1986 .

[12]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[13]  Guirong Liu,et al.  Point interpolation method based on local residual formulation using radial basis functions , 2002 .

[14]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[15]  Gui-Rong Liu,et al.  A point interpolation method for simulating dissipation process of consolidation , 2001 .

[16]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[17]  S. N. Atluri,et al.  Analysis of shear flexible beams, using the meshless local Petrov‐Galerkin method, based on a locking‐free formulation , 2001 .

[18]  S. Atluri,et al.  A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach , 1998 .

[19]  Guirong Liu,et al.  A point interpolation method for two-dimensional solids , 2001 .

[20]  YuanTong Gu,et al.  A local point interpolation method (LPIM) for static and dynamic analysis of thin beams , 2001 .

[21]  Satya N. Atluri,et al.  New concepts in meshless methods , 2000 .

[22]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[23]  G. R. Liu,et al.  A local point interpolation method for stress analysis of two-dimensional solids , 2001 .

[24]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[25]  YuanTong Gu,et al.  A Meshless Local Petrov-Galerkin (MLPG) Formulation for Static and Free Vibration Analyses of Thin Plates , 2001 .