Classification of Lattice Defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth‐Abundant Solar Cell Absorbers

The kesterite‐structured semiconductors Cu2ZnSnS4 and Cu2ZnSnSe4 are drawing considerable attention recently as the active layers in earth‐abundant low‐cost thin‐film solar cells. The additional number of elements in these quaternary compounds, relative to binary and ternary semiconductors, results in increased flexibility in the material properties. Conversely, a large variety of intrinsic lattice defects can also be formed, which have important influence on their optical and electrical properties, and hence their photovoltaic performance. Experimental identification of these defects is currently limited due to poor sample quality. Here recent theoretical research on defect formation and ionization in kesterite materials is reviewed based on new systematic calculations, and compared with the better studied chalcopyrite materials CuGaSe2 and CuInSe2. Four features are revealed and highlighted: (i) the strong phase‐competition between the kesterites and the coexisting secondary compounds; (ii) the intrinsic p‐type conductivity determined by the high population of acceptor CuZn antisites and Cu vacancies, and their dependence on the Cu/(Zn+Sn) and Zn/Sn ratio; (iii) the role of charge‐compensated defect clusters such as [2CuZn+SnZn], [VCu+ZnCu] and [ZnSn+2ZnCu] and their contribution to non‐stoichiometry; (iv) the electron‐trapping effect of the abundant [2CuZn+SnZn] clusters, especially in Cu2ZnSnS4. The calculated properties explain the experimental observation that Cu poor and Zn rich conditions (Cu/(Zn+Sn) ≈ 0.8 and Zn/Sn ≈ 1.2) result in the highest solar cell efficiency, as well as suggesting an efficiency limitation in Cu2ZnSn(S,Se)4 cells when the S composition is high.

[1]  Lin-wang Wang,et al.  Abundance of CuZn+SnZn and 2CuZn+SnZn defect clusters in kesterite solar cells , 2012 .

[2]  D. Mitzi,et al.  Electronically active defects in the Cu2ZnSn(Se,S)4 alloys as revealed by transient photocapacitance spectroscopy , 2012 .

[3]  S. Siebentritt,et al.  Kesterites—a challenging material for solar cells , 2012 .

[4]  D. Mitzi,et al.  Electronic properties of the Cu2ZnSn(Se,S)4 absorber layer in solar cells as revealed by admittance spectroscopy and related methods , 2012 .

[5]  M. Graça,et al.  Admittance spectroscopy of Cu2ZnSnS4 based thin film solar cells , 2012 .

[6]  Rommel Noufi,et al.  Co-Evaporated Cu2ZnSnSe4 Films and Devices , 2012 .

[7]  Tayfun Gokmen,et al.  Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency , 2012 .

[8]  M. Edoff,et al.  Direct evidence of current blocking by ZnSe in Cu2ZnSnSe4 solar cells , 2012 .

[9]  Aron Walsh,et al.  Kesterite Thin‐Film Solar Cells: Advances in Materials Modelling of Cu2ZnSnS4 , 2012 .

[10]  Q. Guo,et al.  Existence and removal of Cu2Se second phase in coevaporated Cu2ZnSnSe4 thin films , 2012 .

[11]  I. Repins,et al.  Dielectric function spectra and critical-point energies of Cu2ZnSnSe4 from 0.5 to 9.0 eV , 2012 .

[12]  D. Dhawale,et al.  Room temperature novel chemical synthesis of Cu2ZnSnS4 (CZTS) absorbing layer for photovoltaic application , 2012 .

[13]  Martin A. Green,et al.  Solar cell efficiency tables (version 39) , 2012 .

[14]  Tayfun Gokmen,et al.  Device characteristics of a 10.1% hydrazine‐processed Cu2ZnSn(Se,S)4 solar cell , 2012 .

[15]  T. Unold,et al.  Determination of secondary phases in kesterite Cu2ZnSnS4 thin films by x-ray absorption near edge structure analysis , 2011 .

[16]  Zhiqun Lin,et al.  Low-cost copper zinc tin sulfide counter electrodes for high-efficiency dye-sensitized solar cells. , 2011, Angewandte Chemie.

[17]  B. Ahn,et al.  Fabrication of Cu2ZnSnS4 films by sulfurization of Cu/ZnSn/Cu precursor layers in sulfur atmosphere for solar cells , 2011 .

[18]  J. Yun,et al.  Studies on Cu2ZnSnS4 (CZTS) absorber layer using different stacking orders in precursor thin films , 2011 .

[19]  Marta S. Ferreira,et al.  The influence of hydrogen in the incorporation of Zn during the growth of Cu2ZnSnS4 thin films , 2011 .

[20]  S. Tajima,et al.  Selective CO2 conversion to formate in water using a CZTS photocathode modified with a ruthenium complex polymer. , 2011, Chemical communications.

[21]  Mowafak Al-Jassim,et al.  Comparative study of the luminescence and intrinsic point defects in the kesterite Cu2ZnSnS4 and chalcopyrite Cu(In,Ga)Se2 thin films used in photovoltaic applications , 2011 .

[22]  Kunihiko Tanaka,et al.  Influence of H2S concentration on the properties of Cu2ZnSnS4 thin films and solar cells prepared by sol–gel sulfurization , 2011 .

[23]  H. Hillhouse,et al.  Earth‐Abundant Element Photovoltaics Directly from Soluble Precursors with High Yield Using a Non‐Toxic Solvent , 2011 .

[24]  Amy L. Prieto,et al.  Compositionally tunable Cu2ZnSn(S(1-x)Se(x))4 nanocrystals: probing the effect of Se-inclusion in mixed chalcogenide thin films. , 2011, Journal of the American Chemical Society.

[25]  Hongxia Wang Progress in Thin Film Solar Cells Based on , 2011 .

[26]  T. Raadik,et al.  Photoluminescence and Raman study of Cu2ZnSn(SexS1 − x)4 monograins for photovoltaic applications , 2011 .

[27]  D. Mitzi,et al.  Progress towards marketable earth-abundant chalcogenide solar cells , 2011 .

[28]  J. Yun,et al.  Optical characterization of Cu2ZnSnSe4 grown by thermal co-evaporation , 2011 .

[29]  T. Wada,et al.  First-principles calculations of vacancy formation in In-free photovoltaic semiconductor Cu2ZnSnSe4 , 2011 .

[30]  W. Jo,et al.  Enhanced exciton separation through negative energy band bending at grain boundaries of Cu2ZnSnSe4 thin-films , 2011 .

[31]  A. Walsh,et al.  Structural diversity and electronic properties of Cu2SnX3 (X = S, Se): A first-principles investigation , 2011 .

[32]  M. Grossberg,et al.  Optical properties of high quality Cu2ZnSnSe4 thin films , 2011 .

[33]  Zhiqun Lin,et al.  Cu2ZnSnS4 nanocrystals and graphene quantum dots for photovoltaics. , 2011, Nanoscale.

[34]  G. M. Ribeiro,et al.  Photoluminescence and electrical study of fluctuating potentials in Cu2ZnSnS4-based thin films , 2011 .

[35]  A. D. Cunha,et al.  Study of polycrystalline Cu2ZnSnS4 films by Raman scattering , 2011 .

[36]  Suhuai Wei,et al.  Carrier density and compensation in semiconductors with multiple dopants and multiple transition energy levels: Case of Cu impurities in CdTe , 2011 .

[37]  S. Schorr The crystal structure of kesterite type compounds: A neutron and X-ray diffraction study , 2011 .

[38]  Supratik Guha,et al.  The path towards a high-performance solution-processed kesterite solar cell ☆ , 2011 .

[39]  C. Felser,et al.  Defect structures in CuInSe2: A combination of Monte Carlo simulations and density functional theory , 2011 .

[40]  S. Botti,et al.  Band structures of Cu2ZnSnS4 and Cu2ZnSnSe4 from many-body methods , 2011, 1105.4968.

[41]  A. Pérez‐Rodríguez,et al.  In-depth resolved Raman scattering analysis for the identification of secondary phases: Characterization of Cu2ZnSnS4 layers for solar cell applications , 2011 .

[42]  Rakesh Agrawal,et al.  Earth Abundant Element Cu2Zn(Sn1−xGex)S4 Nanocrystals for Tunable Band Gap Solar Cells: 6.8% Efficient Device Fabrication , 2011 .

[43]  A. Pérez‐Rodríguez,et al.  Detection of a ZnSe secondary phase in coevaporated Cu2ZnSnSe4 thin films , 2011 .

[44]  Kunihiko Tanaka,et al.  Chemical composition dependence of morphological and optical properties of Cu2ZnSnS4 thin films deposited by sol–gel sulfurization and Cu2ZnSnS4 thin film solar cell efficiency , 2011 .

[45]  Tejas Prabhakar,et al.  Effect of sodium diffusion on the structural and electrical properties of Cu2ZnSnS4 thin films , 2011 .

[46]  A. Walsh,et al.  Compositional dependence of structural and electronic properties of Cu(2)ZnSn(S,Se)(4) alloys for thin film solar cells , 2011 .

[47]  P. Dale,et al.  The consequences of kesterite equilibria for efficient solar cells. , 2011, Journal of the American Chemical Society.

[48]  D. Mitzi,et al.  Structural and elemental characterization of high efficiency Cu2ZnSnS4 solar cells , 2011 .

[49]  S. Bent,et al.  Aqueous bath process for deposition of Cu2ZnSnS4 photovoltaic absorbers , 2011 .

[50]  F. Hofer,et al.  The stoichiometry of single nanoparticles of copper zinc tin selenide. , 2011, Chemical communications.

[51]  B. Marsen,et al.  Cu2ZnSnS4 thin film solar cells by fast coevaporation , 2011 .

[52]  Dong Xu,et al.  Fabrication of Cu2ZnSnS4 screen printed layers for solar cells , 2010 .

[53]  Rakesh Agrawal,et al.  Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. , 2010, Journal of the American Chemical Society.

[54]  J. M. Merino,et al.  Optical constants of Cu2ZnGeS4 bulk crystals , 2010 .

[55]  Enn Mellikov,et al.  Sulfur-containing Cu2ZnSnSe4 monograin powders for solar cells , 2010 .

[56]  S. Ikeda,et al.  Multicomponent sulfides as narrow gap hydrogen evolution photocatalysts. , 2010, Physical chemistry chemical physics : PCCP.

[57]  D. Mitzi,et al.  Thermally evaporated Cu2ZnSnS4 solar cells , 2010 .

[58]  K. Albe,et al.  Thermodynamics and kinetics of the copper vacancy in CuInSe2, CuGaSe2, CuInS2, and CuGaS2 from screened-exchange hybrid density functional theory , 2010 .

[59]  T. Çagin,et al.  Ab initio study of thermoelectric transport properties of pure and doped quaternary compounds , 2010 .

[60]  J. Yun,et al.  Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values , 2010 .

[61]  A. Walsh,et al.  Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4 , 2010 .

[62]  S. Tomić,et al.  Defect physics of CuGaS 2 , 2010 .

[63]  David B Mitzi,et al.  High‐Efficiency Solar Cell with Earth‐Abundant Liquid‐Processed Absorber , 2010, Advanced materials.

[64]  A. Zunger,et al.  The electronic consequences of multivalent elements in inorganic solar absorbers: Multivalency of Sn in Cu2ZnSnS4 , 2010 .

[65]  J. Arbiol,et al.  Synthesis of quaternary chalcogenide nanocrystals: stannite Cu(2)Zn(x)Sn(y)Se(1+x+2y). , 2010, Journal of the American Chemical Society.

[66]  G. Kresse,et al.  Defect formation and phase stability of Cu 2 ZnSnS 4 photovoltaic material , 2010 .

[67]  C. Persson Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4 , 2010 .

[68]  C. Surya,et al.  Preparation of Cu2ZnSnS4 films by electrodeposition using ionic liquids , 2010 .

[69]  P. Bhaskar,et al.  Effect of Cu/(Zn+Sn) ratio on the properties of co-evaporated Cu2ZnSnSe4 thin films , 2010 .

[70]  H. Schock,et al.  On the Sn loss from thin films of the material system Cu-Zn-Sn-S in high vacuum , 2010 .

[71]  A. Walsh,et al.  Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4 , 2010 .

[72]  A. Kudo,et al.  Novel Stannite-type Complex Sulfide Photocatalysts AI2-Zn-AIV-S4 (AI = Cu and Ag; AIV = Sn and Ge) for Hydrogen Evolution under Visible-Light Irradiation , 2010 .

[73]  S. Siebentritt,et al.  Shallow defects in Cu2ZnSnS4 , 2009 .

[74]  Fuqiang Huang,et al.  Improved Thermoelectric Properties of Cu‐Doped Quaternary Chalcogenides of Cu2CdSnSe4 , 2009 .

[75]  T. Çagin,et al.  Assessment of thermoelectric performance of Cu2ZnSnX4, X=S, Se, and Te , 2009 .

[76]  B. Parkinson,et al.  Solution-based synthesis and characterization of Cu2ZnSnS4 nanocrystals. , 2009, Journal of the American Chemical Society.

[77]  V. Raja,et al.  Preparation and characterization of spray-deposited Cu2ZnSnS4 thin films , 2009 .

[78]  R. Miles,et al.  Cu2ZnSnSe4 thin film solar cells produced by selenisation of magnetron sputtered precursors , 2009 .

[79]  Kunihiko Tanaka,et al.  Preparation of Cu2ZnSnS4 thin film solar cells under non‐vacuum condition , 2009 .

[80]  Hisao Uchiki,et al.  Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing , 2009 .

[81]  M. Yamazaki,et al.  Preparation of Cu2ZnSnS4 thin films by sulfurization of co-electroplated Cu-Zn-Sn precursors , 2009 .

[82]  A. Walsh,et al.  Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and I-III-VI2 compounds , 2009 .

[83]  Georg Kresse,et al.  Cu 2 ZnSnS 4 as a potential photovoltaic material: A hybrid Hartree-Fock density functional theory study , 2009 .

[84]  P. Escribano,et al.  Cu2ZnSnS4 films deposited by a soft-chemistry method , 2009 .

[85]  P. Dale,et al.  Synthesis and characterization of Cu2ZnSnS4 absorber layers by an electrodeposition-annealing route , 2009 .

[86]  A. Ennaoui,et al.  Cu2ZnSnS4 thin film solar cells from electroplated precursors: Novel low-cost perspective , 2009 .

[87]  Hideaki Araki,et al.  Development of CZTS-based thin film solar cells , 2009 .

[88]  A. Ennaoui,et al.  The crystallisation of Cu2ZnSnS4 thin film solar cell absorbers from co-electroplated Cu-Zn-Sn precursors , 2009 .

[89]  M. Grossberg,et al.  Radiative recombination in Cu2ZnSnSe4 monograins studied by photoluminescence spectroscopy , 2009 .

[90]  Xuezhao Shi,et al.  Electrochemical deposition of quaternary Cu2ZnSnS4 thin films as potential solar cell material , 2009 .

[91]  Aron Walsh,et al.  Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: First-principles insights , 2009 .

[92]  Hideaki Araki,et al.  Growth of Cu2ZnSnS4 thin films on Si (100) substrates by multisource evaporation , 2008 .

[93]  I. Forbes,et al.  New routes to sustainable photovoltaics: evaluation of Cu2ZnSnS4 as an alternative absorber material , 2008 .

[94]  Tadashi Ito,et al.  Enhanced Conversion Efficiencies of Cu2ZnSnS4-Based Thin Film Solar Cells by Using Preferential Etching Technique , 2008 .

[95]  Kunihiko Tanaka,et al.  Optical Properties of Cu2ZnSnS4 Thin Films Prepared by Sol–Gel and Sulfurization Method , 2008 .

[96]  Alex Zunger,et al.  Intrinsic DX centers in ternary chalcopyrite semiconductors. , 2008, Physical review letters.

[97]  Enn Mellikov,et al.  Cu2Zn1–x Cdx Sn(Se1–y Sy)4 solid solutions as absorber materials for solar cells , 2008 .

[98]  B. Munir,et al.  Pulsed laser deposition of quaternary Cu2ZnSnSe4 thin films , 2007 .

[99]  Badrul Munir,et al.  Single step preparation of quaternary Cu2ZnSnSe4 thin films by RF magnetron sputtering from binary chalcogenide targets , 2007 .

[100]  Hisao Uchiki,et al.  Fabrication of Cu2ZnSnS4 Thin-Film Solar Cell Prepared by Pulsed Laser Deposition , 2007 .

[101]  R. Hock,et al.  Predicted formation reactions for the solid-state syntheses of the semiconductor materials Cu2SnX3 and Cu2ZnSnX4 (X = S, Se) starting from binary chalcogenides , 2007 .

[102]  E. Xie,et al.  Cu2ZnSnS4 thin films prepared by sulfurization of ion beam sputtered precursor and their electrical and optical properties , 2006 .

[103]  Kunihiko Tanaka,et al.  Epitaxial growth of Cu2ZnSnS4 thin films by pulsed laser deposition , 2006 .

[104]  Kunihiko Tanaka,et al.  Donor‐acceptor pair recombination luminescence from Cu2ZnSnS4 bulk single crystals , 2006 .

[105]  N. Syrbu,et al.  Optical properties of monocrystalline CuIn5Se8 , 2006 .

[106]  A. Zunger,et al.  Compositionally induced valence-band offset at the grain boundary of polycrystalline chalcopyrites creates a hole barrier , 2005 .

[107]  H. Ogawa,et al.  Preparation of Cu2ZnSnS4 thin films by hybrid sputtering , 2005 .

[108]  C. Domain,et al.  Ab initio investigation of potential indium and gallium free chalcopyrite compounds for photovoltaic application , 2005 .

[109]  Shengbai Zhang,et al.  Defect properties of CuInSe2 and CuGaSe2 , 2005 .

[110]  A. Zunger,et al.  n -type doping of CuIn Se 2 and CuGa Se 2 , 2005 .

[111]  H. Katagiri Cu2ZnSnS4 thin film solar cells , 2005 .

[112]  Rommel Noufi,et al.  SHORT COMMUNICATION: ACCELERATED PUBLICATION: Diode characteristics in state‐of‐the‐art ZnO/CdS/Cu(In1−xGax)Se2 solar cells , 2005 .

[113]  A. Zunger,et al.  Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors , 2005, cond-mat/0503018.

[114]  A. Walsh,et al.  Electronic structures of rocksalt, litharge, and herzenbergite SnO by density functional theory , 2004 .

[115]  Suhuai Wei,et al.  Overcoming the doping bottleneck in semiconductors , 2004 .

[116]  J. Pankow,et al.  Local built-in potential on grain boundary of Cu(In,Ga)Se2 thin films , 2004 .

[117]  C. Walle,et al.  First-principles calculations for defects and impurities: Applications to III-nitrides , 2004 .

[118]  S. Nishiwaki,et al.  Self-compensation of intrinsic defects in the ternary semiconductor CuGaSe 2 , 2004 .

[119]  S. Zhang,et al.  Reconstruction and Energetics of the Polar (112) and ( 1 1 2 ) Versus the Non-Polar (220) Surfaces of CuInSe2: Preprint , 2002 .

[120]  A. Zunger,et al.  Defect physics of the CuInSe 2 chalcopyrite semiconductor , 1998 .

[121]  Kentaro Ito,et al.  Sprayed films of stannite Cu2ZnSnS4 , 1996 .

[122]  Zhang,et al.  Chemical potential dependence of defect formation energies in GaAs: Application to Ga self-diffusion. , 1991, Physical review letters.

[123]  Kentaro Ito,et al.  Electrical and Optical Properties of Stannite-Type Quaternary Semiconductor Thin Films , 1988 .

[124]  H. Kukimoto,et al.  The electron trap associated with an anion vacancy in ZnSe and ZnSxSe1−x , 1980 .

[125]  B. Pamplin A systematic method of deriving new semiconducting compounds by structural analogy , 1964 .

[126]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[127]  C. Goodman The prediction of semiconducting properties in inorganic compounds , 1958 .

[128]  Tayfun Gokmen,et al.  Beyond 11% Efficiency: Characteristics of State‐of‐the‐Art Cu2ZnSn(S,Se)4 Solar Cells , 2013 .

[129]  Yu‐Guo Guo,et al.  Wurtzite Cu2ZnSnSe4 nanocrystals for high-performance organic|[ndash]|inorganic hybrid photodetectors , 2012 .

[130]  H. Katagiri,et al.  The Influence of the Composition Ratio on CZTS-based Thin Film Solar Cells , 2009 .

[131]  M. Tovar,et al.  A neutron diffraction study of the stannite-kesterite solid solution series , 2007 .

[132]  S. Miyajima,et al.  Development of thin film solar cell based on Cu2ZnSnS4 thin films , 2001 .