An analytical model for embedment stiffness of a dowel in timber under cyclic load

The fundamental part of a dowel-type connection is the embedment of a steel dowel into the timber that surrounds it, and the stiffness of the timber in embedment is represented by the foundation modulus. A standard experimental method for identifying the foundation modulus under static load is modified to assess the secant stiffness exhibited under one-sided cyclic load. It is shown that the steady-state secant stiffness is significantly higher than the static stiffness under initial loading, and that, if the amplitude of the cyclic component of the load is sufficiently small, a simple analytical elastic model predicts the foundation modulus well. The analytical model is based on a complex stress function for the timber in embedment and the frictional interaction between the dowel and the timber. The foundation modulus calculated in this way can be used to predict the stiffness of complete connections for analysis of vibration in frames modelled with semi-rigid joints. Although the application of the model is limited to vibration about a non-zero mean load, with no load-sign reversal, this form of vibration encompasses various important types of in-service vibration of structures, such as that induced by turbulent wind or footfall.ZusammenfassungBei stiftförmigen Verbindungsmitteln ist die Bettung eines Stahldübels im umliegenden Holz von grundlegender Bedeutung. Die Steifigkeit des Holzes im Bereich der Lochleibung wird anhand des Bettungsmoduls ausgedrückt. Zur Beurteilung der bei zyklischer Schwellbelastung auftretenden Sekantensteifigkeit wurde ein Standardprüfverfahren zur Bestimmung des Bettungsmoduls bei statischer Belastung modifiziert. Es wurde gezeigt, dass die stationäre Sekantensteifigkeit signifikant höher ist als die statische Steifigkeit bei Anfangsbelastung und dass bei einer ausreichend kleinen Amplitude der zyklischen Belastungskomponente ein einfaches analytisches elastisches Modell zur Bestimmung des Bettungsmoduls gut geeignet ist. Das analytische Modell basiert auf einer komplexen Spannungsfunktion des Holzes im Bereich der Lochleibung sowie der Reibung zwischen Dübel und Holz. Der so berechnete Bettungsmodul kann bei den Schwingungsberechnungen in Tragwerken mit modellierten nachgiebigen Verbindungen zur Bestimmung der Steifigkeit dieser Verbindungen verwendet werden. Obwohl das Modell nur für eine Schwellbelastung gilt, deckt diese doch verschiedene wichtige Schwingungsbeanspruchungen in Bauwerken ab, wie zum Beispiel Wind- oder Trittbeanspruchung.

[1]  Bo Kasal,et al.  Performance and Drift Levels of Tall Timber Frame Buildings under Seismic and Wind Loads , 2008 .

[2]  Charles E.S. Ueng,et al.  Stresses Around a Pin-loaded Hole in Orthotropic Plates , 1984 .

[3]  Erik Serrano,et al.  Contact-free measurements and numerical analyses of the strain distribution in the joint area of steel-to-timber dowel joints , 2006, Holz als Roh- und Werkstoff.

[4]  Toshiro Hayashikawa,et al.  Effects of pretension in bolts on hysteretic responses of moment-carrying timber joints , 2008, Journal of Wood Science.

[5]  Bo Kasal,et al.  Analysis of wood‐composite laminated frames under dynamic loads—analytical models and model validation. Part I: connection model , 2006 .

[6]  Theo De Jong Stresses Around Pin-Loaded Holes in Elastically Orthotropic or Isotropic Plates , 1977 .

[7]  B. R Ellis,et al.  Dynamic testing and stiffness evaluation of a six-storey timber framed building during construction , 2001 .

[8]  Horace Whitworth,et al.  Analysis of stress distribution around pin loaded holes in orthotropic plates , 2008 .

[9]  Greg Foliente,et al.  Hysteresis Modeling of Wood Joints and Structural Systems , 1995 .

[10]  Nii ALLOTEY,et al.  CYCLIC RESPONSE OF LATERALLY LOADED TIMBER FASTENERS ACCOUNTING FOR SHAFT FRICTION , 2002 .

[11]  W. M. McKenzie,et al.  The frictional behaviour of wood , 1968, Wood Science and Technology.

[12]  Christos T. Georgakis,et al.  Pedestrian-induced lateral vibrations of footbridges: A literature review , 2012 .

[13]  Michael W. Hyer,et al.  Contact stresses in pin-loaded orthotropic plates , 1985 .

[14]  Michael Dorn,et al.  Investigations on the Serviceability Limit State of Dowel-Type Timber Connections , 2012 .

[15]  Robert J. Ross,et al.  Wood handbook : wood as an engineering material , 2010 .

[16]  Vassilis Kostopoulos,et al.  On the Bearing Failure of Laminated Composite Pin‐Loaded Joints: Exploitation of Semi‐Analytical Solutions for the Determination of the Stress State , 2011 .

[17]  Alexander Salenikovich,et al.  Analytical study of a pin-loaded hole in elastic orthotropic plates , 2007 .

[18]  Kohei Komatsu,et al.  A new method for estimating stiffness and strength in bolted timber-to-timber joints and its verification by experiments (II): bolted cross-lapped beam to column joints , 2003, Journal of Wood Science.

[19]  Naoto Ando,et al.  Analysis of load-slip characteristics of nailed wood joints: application of a two-dimensional geometric nonlinear analysis , 2003, Journal of Wood Science.

[20]  Simon Šilih,et al.  Optimum design of plane timber trusses considering joint flexibility , 2005 .

[21]  Erik Serrano,et al.  An experimental and numerical study of the effect of friction in single dowel joints , 2008, Holz als Roh- und Werkstoff.

[22]  Frank Lam,et al.  MODELING THREE-DIMENSIONAL TIMBER LIGHT-FRAME BUILDINGS , 2001 .

[23]  Josef Eberhardsteiner,et al.  Experiments on dowel-type timber connections , 2013 .

[24]  H. J. Larsen,et al.  DS/ENV 1995-1-1 NAD National Application Document for Eurocode 5: Design of Timber Structures, Part 1-1: General Rules and Rules for Buildings , 1994 .

[25]  Nawawi Chouw,et al.  A numerical study of the seismic behaviour of timber shear walls with slip-friction connectors , 2012 .

[26]  H. J. Larsen,et al.  Influence of semi-rigidity of joints on the behaviour of timber structures , 2000 .

[27]  George Z. Voyiadjis,et al.  Mechanics of Composite Materials with MATLAB , 2005 .