Phylogeny of Saxifragales (angiosperms, eudicots): analysis of a rapid, ancient radiation.

Rapid, ancient radiations pose one of the most difficult challenges for phylogenetic estimation. We used DNA sequence data of 9,006 aligned base pairs from five genes (chloroplast atpB, matK, rbcL, and 18S and 26S nrDNA) to elucidate relationships among major lineages of Saxifragales (angiosperms, eudicots). These relationships were poorly supported in previous studies, apparently because the lineages originated in rapid succession. Using an array of methods that explicitly incorporate assumptions about evolutionary process (weighted maximum parsimony, maximum likelihood, LogDet/paralinear transformed distances), we show that the initial diversification of Saxifragales was indeed rapid. We suggest that the poor resolution of our best phylogenetic estimate is not due to violations of assumptions or to combining data partitions having conflicting histories or processes. We show that estimated branch lengths during the initial diversification are exceedingly short, and we estimate that acquiring sufficient sequence data to resolve these relationships would require an extraordinary effort (approximately 10(7) bp), assuming a linear increase in branch support with branch length. However, our simulation of much larger data sets containing a distribution of phylogenetic signal similar to that of the five sampled gene sequences suggests a limit to achievable branch support. Using statistical tests of differences in the likelihoods of topologies, we evaluated whether the initial radiation of Saxifragales involved the simultaneous origin of major lineages. Our results are consistent with predictions that resolving the branching order of rapid, ancient radiations requires sampling characters that evolved rapidly at the time of the radiation but have since experienced a slower evolutionary rate.

[1]  D. Soltis,et al.  Chloroplast DNA variation within and among genera of the Heuchera group (Saxifragaceae): evidence for chloroplast transfer and paraphyly. , 1991 .

[2]  H. Hart,et al.  Phylogenetic relationships in the Crassulaceae inferred from chloroplast DNA restriction-site variation. , 1998, American journal of botany.

[3]  J. Huelsenbeck Performance of Phylogenetic Methods in Simulation , 1995 .

[4]  J. Lake,et al.  Reconstructing evolutionary trees from DNA and protein sequences: paralinear distances. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[5]  S. B. Hoot,et al.  Data Congruence and Phylogeny of the Papaveraceae s.l. Based on Four Data Sets: atpB and rbcL Sequences, trnK Restriction Sites, and Morphological Characters , 1997 .

[6]  rbcL sequence divergence and phylogenetic relationships in Saxifragaceae sensu lato. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[7]  A. Rodrigo,et al.  Likelihood-based tests of topologies in phylogenetics. , 2000, Systematic biology.

[8]  K. Ro,et al.  Molecular phylogenetic study of the Ranunculaceae: utility of the nuclear 26S ribosomal DNA in inferring intrafamilial relationships. , 1997, Molecular phylogenetics and evolution.

[9]  Larry Hufford,et al.  Rosidae and their relationships to other nonmagnoliid dicotyledons : a phylogenetic analysis using morphological and chemical data , 1992 .

[10]  W. Maddison RECONSTRUCTING CHARACTER EVOLUTION ON POLYTOMOUS CLADOGRAMS , 1989, Cladistics : the international journal of the Willi Hennig Society.

[11]  TESTS OF PLEISTOCENE SPECIATION IN MONTANE GRASSHOPPERS (GENUS MELANOPLUS) FROM THE SKY ISLANDS OF WESTERN NORTH AMERICA , 2000, Evolution; international journal of organic evolution.

[12]  Michael M. Miyamoto,et al.  TESTING SPECIES PHYLOGENIES AND PHYLOGENETIC METHODS WITH CONGRUENCE , 1995 .

[13]  S. B. Hoot,et al.  The Utility of atpB Gene Sequences in Resolving Phylogenetic Relationships: Comparison with rbcL and 18S Ribosomal DNA Sequences in the Lardizabalaceae , 1995 .

[14]  Junhyong Kim,et al.  Large-scale phylogenies and measuring the performance of phylogenetic estimators. , 1998, Systematic biology.

[15]  A. Graybeal,et al.  Is it better to add taxa or characters to a difficult phylogenetic problem? , 1998, Systematic biology.

[16]  D. Soltis,et al.  Phylogenetic relationships and evolution of Crassulaceae inferred from matK sequence data. , 2001, American journal of botany.

[17]  Simon Whelan,et al.  Distributions of statistics used for the comparison of models of sequence evolution in phylogenetics , 1999 .

[18]  M. Chase,et al.  Phylogenetics of the Hamamelidae and Their Allies: Parsimony Analyses of Nucleotide Sequences of the Plastid Gene rbcL , 1998, International Journal of Plant Sciences.

[19]  R. Gutell,et al.  Comprehensive comparison of structural characteristics in eukaryotic cytoplasmic large subunit (23 S-like) ribosomal RNA. , 1996, Journal of molecular biology.

[20]  John P. Huelsenbeck,et al.  A Likelihood Ratio Test to Detect Conflicting Phylogenetic Signal , 1996 .

[21]  T. Moum,et al.  POLYTOMIES AND THE POWER OF PHYLOGENETIC INFERENCE , 1999, Evolution; international journal of organic evolution.

[22]  H Kishino,et al.  Appropriate likelihood ratio tests and marginal distributions for evolutionary tree models with constraints on parameters. , 2000, Molecular biology and evolution.

[23]  D. Soltis,et al.  Molecular Evolution of 18S rDNA in Angiosperms: Implications for Character Weighting in Phylogenetic Analysis , 1998 .

[24]  D. Soltis,et al.  MATK AND RBCL GENE SEQUENCE DATA INDICATE THAT SAXIFRAGA (SAXIFRAGACEAE) IS POLYPHYLETIC , 1996 .

[25]  J. Sullivan Combining Data with Different Distributions of Among-Site Rate Variation , 1996 .

[26]  F. Sperling,et al.  Interaction of process partitions in phylogenetic analysis: an example from the swallowtail butterfly genus Papilio. , 1999, Molecular biology and evolution.

[27]  T. Jukes CHAPTER 24 – Evolution of Protein Molecules , 1969 .

[28]  J. Huelsenbeck,et al.  A Likelihood-Ratio Test of Monophyly , 1996 .

[29]  Roderic D. M. Page,et al.  Genes, organisms, and areas: the problem of multiple lineages , 1993 .

[30]  Bc Haimson,et al.  A Simple Method for Estimating In Situ Stresses at Great Depths , 1974 .

[31]  M. Chase,et al.  Higher-level classification in the angiosperms: new insights from the perspective of DNA sequence data , 2000 .

[32]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[33]  E. Conti,et al.  Circumscription of Myrtales and their relationships to other rosids: evidence from rbcL sequence data , 1996 .

[34]  V. Friesen,et al.  POWER AND STOCHASTICITY IN THE RESOLUTION OF SOFT POLYTOMIES: A REPLY TO BRAUN ET AL , 2001 .

[35]  D. Soltis,et al.  Phylogenetic relationships in Saxifragaceae sensu lato: A comparison of topologies based on 18S rDNA and rbcL sequences. , 1997, American journal of botany.

[36]  Phylogenetic relationships of the enigmatic angiosperm family Podostemaceae inferred from 18S rDNA and rbcL sequence data. , 1999, Molecular phylogenetics and evolution.

[37]  Leigh A. Johnson,et al.  Assessing Congruence: Empirical Examples from Molecular Data , 1998 .

[38]  M. P. Cummings,et al.  Sampling properties of DNA sequence data in phylogenetic analysis. , 1995, Molecular biology and evolution.

[39]  D. Soltis,et al.  Phylogeny, Classification and Floral Evolution of Water Lilies (Nymphaeaceae; Nymphaeales): A Synthesis of Non-molecular, rbcL, matK, and 18S rDNA Data , 1999 .

[40]  M. Donoghue,et al.  Analyzing large data sets: rbcL 500 revisited. , 1997, Systematic biology.

[41]  D. Soltis,et al.  Molecular systematics of Saxifragaceae sensu stricto , 1993 .

[42]  D. Soltis,et al.  MatK DNA Sequences and Phylogenetic Reconstruction in Saxifragaceae s. str , 1994 .

[43]  D. Soltis,et al.  Phylogenetic relationships among members of Saxifragaceae sensu lato based on rbcL sequence data , 1993 .

[44]  E. Kellogg,et al.  Testing for Phylogenetic Conflict Among Molecular Data Sets in the Tribe Triticeae (Gramineae) , 1996 .

[45]  D. Hillis,et al.  Ribosomal DNA: Molecular Evolution and Phylogenetic Inference , 1991, The Quarterly Review of Biology.

[46]  Nick Goldman,et al.  MAXIMUM LIKELIHOOD TREES FROM DNA SEQUENCES: A PECULIAR STATISTICAL ESTIMATION PROBLEM , 1995 .

[47]  B. Hall,et al.  Long-branch attraction and the rDNA model of early eukaryotic evolution. , 1999, Molecular biology and evolution.

[48]  Junhyong Kim,et al.  Separate Versus Combined Analysis of Phylogenetic Evidence , 1995 .

[49]  E. Braun,et al.  POLYTOMIES, THE POWER OF PHYLOGENETIC INFERENCE, AND THE STOCHASTIC NATURE OF MOLECULAR EVOLUTION: A COMMENT ON WALSH ET AL. (1999) , 2001, Evolution; international journal of organic evolution.

[50]  J. Palmer,et al.  Phylogenetic Implications of rbcL Sequence Variation in the Asteraceae , 1992 .

[51]  R. Barnes,et al.  Phylogenetics and Classification of Cunoniaceae (Oxalidales) Using Chloroplast DNA Sequences and Morphology , 2009 .

[52]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[53]  J. Wakeley,et al.  Substitution-rate variation among sites and the estimation of transition bias. , 1994, Molecular biology and evolution.

[54]  J. Bull,et al.  An Empirical Test of Bootstrapping as a Method for Assessing Confidence in Phylogenetic Analysis , 1993 .

[55]  P. Herendeen,et al.  Phylogenetic pattern, diversity, and diversification of Eudicots , 1999 .

[56]  W. Li,et al.  Maximum likelihood estimation of the heterogeneity of substitution rate among nucleotide sites. , 1995, Molecular biology and evolution.

[57]  J. Palmer,et al.  Monophyly of the Asteridae and Identification of Their Major Lineages Inferred From DNA Sequences of rbcL , 1992 .

[58]  M. Chase,et al.  A COMBINED CLADISTIC ANALYSIS OF ANGIOSPERMS USING RBCL AND NON-MOLECULAR DATA SETS , 1998 .

[59]  P. K. Endress,et al.  The diversity of stamen structures in ‘Lower’ Rosidae (Rosales, Fabales, Proteales, Sapindales) , 1991 .

[60]  J. Doyle,et al.  The Bases of Angiosperm Phylogeny: Palynology , 1975 .

[61]  C. Bult,et al.  TESTING SIGNIFICANCE OF INCONGRUENCE , 1994 .

[62]  D. Tautz,et al.  Evolution and phylogeny of the Diptera: a molecular phylogenetic analysis using 28S rDNA sequences. , 1997, Systematic biology.

[63]  C. Rowell,et al.  Combined molecular phylogenetic analysis of the Orthoptera (Arthropoda, Insecta) and implications for their higher systematics. , 1999, Systematic biology.

[64]  M. Donoghue,et al.  The Suitability of Molecular and Morphological Evidence in Reconstructing Plant Phylogeny , 1992 .

[65]  Andrew Rambaut,et al.  Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees , 1997, Comput. Appl. Biosci..

[66]  H. Clifford 12 – Diversity and Classification , 1975 .

[67]  Kevin de Queiroz,et al.  Phylogenetic Relationships and Tempo of Early Diversification in Anolis Lizards , 1999 .

[68]  D. Soltis,et al.  Diversification of the North American shrub genus Ceanothus (Rhamnaceae): conflicting phylogenies from nuclear ribosomal DNA and chloroplast DNA. , 2000, American journal of botany.

[69]  J. Sullivan,et al.  28S and 18S rDNA sequences support the monophyly of lampreys and hagfishes. , 1998, Molecular biology and evolution.

[70]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[71]  J. Ballard,et al.  Data sets, partitions, and characters: philosophies and procedures for analyzing multiple data sets. , 1998, Systematic biology.

[72]  J. McGuire,et al.  Morphology, molecules, and the phylogenetics of cetaceans. , 1998, Systematic biology.

[73]  James F. Smith Phylogenetics of seed plants : An analysis of nucleotide sequences from the plastid gene rbcL , 1993 .

[74]  Michael J. Sanderson,et al.  Objections to Bootstrapping Phylogenies: A Critique , 1995 .

[75]  S. B. Hoot,et al.  Phylogeny of Basal Eudicots Based on Three Molecular Data Sets: atpB, rbcL, and 18s Nuclear Ribosomal DNA Sequences , 1999 .

[76]  W. Brown,et al.  Amphioxus mitochondrial DNA, chordate phylogeny, and the limits of inference based on comparisons of sequences. , 1998, Systematic biology.

[77]  W. Kress,et al.  Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences , 2000 .

[78]  J. Doyle,et al.  Trees within trees: genes and species, molecules and morphology. , 1997, Systematic biology.

[79]  A. L. Bogle,et al.  Phylogenetic relationships of the Hamamelidaceae inferred from sequences of internal transcribed spacers (ITS) of nuclear ribosomal DNA. , 1999, American journal of botany.

[80]  D. Soltis,et al.  Phylogenetics of flowering plants based on combined analysis of plastid atpB and rbcL gene sequences. , 2000, Systematic biology.

[81]  H Philippe,et al.  How many nucleotides are required to resolve a phylogenetic problem? The use of a new statistical method applicable to available sequences. , 1994, Molecular phylogenetics and evolution.

[82]  D. Maddison The discovery and importance of multiple islands of most , 1991 .

[83]  V. Ashworth Phylogenetic Relationships in Phoradendreae (Viscaceae) Inferred from Three Regions of the Nuclear Ribosomal Cistron. I. Major Lineages and Paraphyly of Phoradendron , 2000 .

[84]  F. James Rohlf,et al.  ACCURACY OF ESTIMATED PHYLOGENIES: EFFECTS OF TREE TOPOLOGY AND EVOLUTIONARY MODEL , 1990, Evolution; international journal of organic evolution.

[85]  William S. Moore,et al.  Resolution of phylogenetic relationships among recently evolved species as a function of amount of DNA sequence: an empirical study based on woodpeckers (Aves: Picidae). , 2000, Molecular phylogenetics and evolution.

[86]  K. Cullings Design and testing of a plant‐specific PCR primer for ecological and evolutionary studies , 1992 .

[87]  C. Cunningham,et al.  Can three incongruence tests predict when data should be combined? , 1997, Molecular biology and evolution.

[88]  D. Schluter,et al.  Using Phylogenies to Test Macroevolutionary Hypotheses of Trait Evolution in Cranes (Gruinae) , 1999, The American Naturalist.

[89]  K. Winka,et al.  Ribosomal DNA and resolution of branching order among the ascomycota: how many nucleotides are enough? , 2000, Molecular phylogenetics and evolution.

[90]  T. Sang,et al.  Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). , 1997, American journal of botany.

[91]  S. Whelan,et al.  Statistical tests of gamma-distributed rate heterogeneity in models of sequence evolution in phylogenetics. , 2000, Molecular biology and evolution.

[92]  J. Wendel,et al.  Congruence and Consensus in the Cotton Tribe (Malvaceae) , 1997 .

[93]  S. Cevallos-Ferriz,et al.  Reproductive and vegetative organs with affinities to Haloragaceae from the Upper Cretaceous Huepac Chert Locality of Sonora, Mexico. , 1999, American journal of botany.

[94]  E. Pahlich,et al.  A rapid DNA isolation procedure for small quantities of fresh leaf tissue , 1980 .

[95]  Hidetoshi Shimodaira,et al.  Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference , 1999, Molecular Biology and Evolution.

[96]  M. Donoghue,et al.  The Importance of Fossils in Phylogeny Reconstruction , 1989 .

[97]  R DeSalle,et al.  Multiple sources of character information and the phylogeny of Hawaiian drosophilids. , 1997, Systematic biology.

[98]  Arthur Cronquist,et al.  Angiosperm Orders and Families. (Book Reviews: An Integrated System of Classification of Flowering Plants) , 1982 .

[99]  W. Maddison Gene Trees in Species Trees , 1997 .

[100]  W. John Kress,et al.  Angiosperm Phylogeny Inferred from 18S Ribosomal DNA Sequences , 1997 .

[101]  D. Soltis,et al.  The phylogenetic potential of entire 26S rDNA sequences in plants. , 1998, Molecular biology and evolution.

[102]  D. Hillis,et al.  Ribosomal RNA secondary structure: compensatory mutations and implications for phylogenetic analysis. , 1993, Molecular biology and evolution.

[103]  P. K. Endress A SUPRAGENERIC TAXONOMIC CLASSIFICATION OF THE HAMAMELIDACEAE , 1989 .

[104]  C. Fan Phylogenetic relationships within Cornus (Cornaceae) based on 26S rDNA sequences. , 2001, American journal of botany.

[105]  J. Felsenstein Cases in which Parsimony or Compatibility Methods will be Positively Misleading , 1978 .

[106]  A. L. Takhtadzhi︠a︡n Diversity and classification of flowering plants , 1997 .

[107]  Elizabeth A. Kellogg,et al.  An ordinal classification for the families of flowering plants , 1998 .

[108]  D. Soltis,et al.  Phylogenetic Relationships within Lithophragma (Saxifragaceae): Hybridization, Allopolyploidy, and Ovary Diversification , 1999 .

[109]  M. H. Hils,et al.  Comparative anatomy and systematics of woody Saxifragaceae. Aphanopetalum Endl. , 1994 .

[110]  J. Bull,et al.  Combining data in phylogenetic analysis. , 1996, Trends in ecology & evolution.

[111]  R. Olmstead,et al.  Patterns of Sequence Evolution and Implications for Parsimony Analysis of Chloroplast DNA , 1998 .

[112]  F. Blattner,et al.  Charons 36 to 40: multi enzyme, high capacity, recombination deficient replacement vectors with polylinkers and polystuffers. , 1987, Nucleic acids research.

[113]  J. Huelsenbeck,et al.  SUCCESS OF PHYLOGENETIC METHODS IN THE FOUR-TAXON CASE , 1993 .

[114]  B. Bremer,et al.  More characters or more taxa for a robust phylogeny--case study from the coffee family (Rubiaceae). , 1999, Systematic biology.

[115]  M. Steel,et al.  Recovering evolutionary trees under a more realistic model of sequence evolution. , 1994, Molecular biology and evolution.

[116]  R. Ward,et al.  Rapid radiation events in the family Ursidae indicated by likelihood phylogenetic estimation from multiple fragments of mtDNA. , 1999, Molecular phylogenetics and evolution.

[117]  M. Lavin,et al.  Phylogenetic analysis of the cultivated and wild species of Phaseolus (Fabaceae) , 1999 .

[118]  N. Saitou A Theoretical Study of the Underestimation of Branch Lengths by the Maximum Parsimony Principle , 1989 .

[119]  M. Chase,et al.  Carnivorous plants: phylogeny and structural evolution. , 1992, Science.

[120]  R. Keith Semple,et al.  Classification and geography , 1973 .

[121]  J. Bull,et al.  Partitioning and combining data in phylogenetic analysis , 1993 .

[122]  J. Wiens,et al.  MOLECULAR PHYLOGENETICS AND EVOLUTION OF SEXUAL DICHROMATISM AMONG POPULATIONS OF THE YARROW'S SPINY LIZARD (SCELOPORUS JARROVII) , 1999, Evolution; international journal of organic evolution.

[123]  K. Hilu,et al.  The matK gene: sequence variation and application in plant systematics. , 1997, American journal of botany.

[124]  Elizabeth A. Kellogg,et al.  Plant Systematics: A Phylogenetic Approach , 2000 .