Three-Dimensional Electromagnetic Modelling and Inversion from Theory to Application

The whole subject of three-dimensional (3-D) electromagnetic (EM) modelling and inversion has experienced a tremendous progress in the last decade. Accordingly there is an increased need for reviewing the recent, and not so recent, achievements in the field. In the first part of this review paper I consider the finite-difference, finite-element and integral equation approaches that are presently applied for the rigorous numerical solution of fully 3-D EM forward problems. I mention the merits and drawbacks of these approaches, and focus on the most essential aspects of numerical implementations, such as preconditioning and solving the resulting systems of linear equations. I refer to some of the most advanced, state-of-the-art, solvers that are today available for such important geophysical applications as induction logging, airborne and controlled-source EM, magnetotellurics, and global induction studies. Then, in the second part of the paper, I review some of the methods that are commonly used to solve 3-D EM inverse problems and analyse current implementations of the methods available. In particular, I also address the important aspects of nonlinear Newton-type optimisation techniques and computation of gradients and sensitivities associated with these problems.

[1]  V. I. Dmitriev,et al.  Integral equation method in three-dimensional problems of low-frequency electrodynamics , 1992 .

[2]  G. Newman,et al.  Three-dimensional magnetotelluric inversion using non-linear conjugate gradients , 2000 .

[3]  M. Zhdanov,et al.  Quasi‐linear approximation in 3-D electromagnetic modeling , 1996 .

[4]  Y. Sasaki Full 3-D inversion of electromagnetic data on PC , 2001 .

[5]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[6]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[7]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[8]  L. Knizhnerman,et al.  Spectral approach to solving three-dimensional Maxwell's diffusion equations in the time and frequency domains , 1994 .

[9]  V. Červ,et al.  Modelling and analysis of electromagnetic fields in 3D inhomogeneous media , 1990 .

[10]  Gregory A. Newman,et al.  Three‐dimensional induction logging problems, Part I: An integral equation solution and model comparisons , 2002 .

[11]  G. W. Hohmann,et al.  Integral equation modeling of three-dimensional magnetotelluric response , 1981 .

[12]  E. Haber Quasi-Newton methods for large-scale electromagnetic inverse problems , 2005 .

[13]  M. S. Zhdanov Quasi-linear approximation in 3D EM modeling , 1996 .

[14]  Douglas W. Oldenburg,et al.  An Algorithm For the Three-dimensional Inversion of Magnetotelluric Data , 2002 .

[15]  Aria Abubakar,et al.  Non‐linear three‐dimensional inversion of cross‐well electrical measurements , 2000 .

[16]  James G. Berryman,et al.  A Finite-Difference Frequency-Domain Code For Electromagnetic Induction Tomography , 1999 .

[17]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[18]  E. Polak,et al.  Note sur la convergence de méthodes de directions conjuguées , 1969 .

[19]  Gregory A. Newman,et al.  Three-dimensional induction logging problems, Part 2: A finite-difference solution , 2002 .

[20]  Douglas W. Oldenburg,et al.  3-D inversion of induced polarization data3-D Inversion of IP Data , 2000 .

[21]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[22]  Gregory A. Newman,et al.  3D EM Modelling Using Fast Integral Equation Approach with Krylov Subspaces Accelerator , 2000 .

[23]  K. Yamane,et al.  Three-Dimensional Magnetotelluric Inversion Using Generalized RRI Method , 1998 .

[24]  J. T. Smith,et al.  Three-dimensional electromagnetic modeling using finite difference equations: The magnetotelluric example , 1994 .

[25]  Curiudu Induction in a thin sheet of variable conductance at the surface of a stratified earth - I.Two-dimensional theory , 1984 .

[26]  Juan E. Santos,et al.  Parallel finite element algorithm with domain decomposition for three-dimensional magnetotelluric modelling , 2000 .

[27]  E. B. Fainberg,et al.  Generalization of the iterative dissipative method for modeling electromagnetic fields in nonuniform media with displacement currents , 1995 .

[28]  Brian R. Spies,et al.  Three-Dimensional Electromagnetics , 1999 .

[29]  Uri M. Ascher,et al.  Multigrid Preconditioning for Krylov Methods for Time-Harmonic Maxwell's Equations in Three Dimensions , 2002, SIAM J. Sci. Comput..

[30]  E. Haber,et al.  Inversion of 3D electromagnetic data in frequency and time domain using an inexact all-at-once approach , 2004 .

[31]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[32]  Zdeněk Martinec,et al.  Spectral–finite element approach to three‐dimensional electromagnetic induction in a spherical earth , 1999 .

[33]  Paul T. Boggs,et al.  Solution accelerators for large-scale three-dimensional electromagnetic inverse problems : Electromagnetic characterization of buried obstacles , 2004 .

[34]  Sergey Kabanikhin,et al.  Inverse Problems for Maxwell's Equations , 1994 .

[35]  Hiroshi Amano,et al.  2.5‐D inversion of frequency‐domain electromagnetic data generated by a grounded‐wire source , 2002 .

[36]  T. Manteuffel,et al.  Necessary and Sufficient Conditions for the Existence of a Conjugate Gradient Method , 1984 .

[37]  Gerald W. Hohmann,et al.  Electromagnetic modeling of three-dimensional bodies in layered earths using integral equations , 1983 .

[38]  Adam Schultz,et al.  Geoelectromagnetic induction in a heterogeneous sphere:a new three‐dimensional forward solver using a conservative staggered‐grid finite difference method , 2000 .

[39]  Toshihiro Uchida,et al.  3D magnetotelluric modeling using the T‐Ω finite‐element method , 2004 .

[40]  A. Dey,et al.  Resistivity modeling for arbitrarily shaped three-dimensional structures , 1979 .

[41]  William Rodi,et al.  3-D magnetotelluric inversion for resource exploration , 2001 .

[42]  Yuguo Li,et al.  Three‐dimensional DC resistivity forward modelling using finite elements in comparison with finite‐difference solutions , 2002 .

[43]  Toru Mogi,et al.  A new computation method for a staggered grid of 3D EM field conservative modeling , 2002 .

[44]  C. Paige Bidiagonalization of Matrices and Solution of Linear Equations , 1974 .

[45]  Hisayoshi Shimizu,et al.  Possible effects of lateral heterogeneity in the D″ layer on electromagnetic variations of core origin , 2002 .

[46]  J. T. Smith,et al.  Rapid inversion of two‐ and three‐dimensional magnetotelluric data , 1991 .

[47]  Gregory A. Newman,et al.  Electromagnetic induction in a generalized 3D anisotropic earth, Part 2: The LIN preconditioner , 2003 .

[48]  G. Newman,et al.  Frequency‐domain modelling of airborne electromagnetic responses using staggered finite differences , 1995 .

[49]  J. T. Smith Conservative modeling of 3-D electromagnetic fields, Part II: Biconjugate gradient solution and an accelerator , 1996 .

[50]  Sofia Davydycheva,et al.  An efficient finite‐difference scheme for electromagnetic logging in 3D anisotropic inhomogeneous media , 2003 .

[51]  T. Habashy,et al.  Beyond the Born and Rytov approximations: A nonlinear approach to electromagnetic scattering , 1993 .

[52]  D. Oldenburg,et al.  Inversion of induced polarization data , 1994 .

[53]  P. Tarits,et al.  Electromagnetic studies of global geodynamic processes , 1994 .

[54]  Jian-Ming Jin,et al.  A spectral Lanczos decomposition method for solving 3-D low-frequency electromagnetic diffusion by the finite-element method , 1999 .

[55]  Douglas W. Oldenburg,et al.  3-D Frequency-domain CSEM Inversion Using Unconstrained Optimization , 2002 .

[56]  D. Oldenburg,et al.  NON-LINEAR INVERSION USING GENERAL MEASURES OF DATA MISFIT AND MODEL STRUCTURE , 1998 .

[57]  Gregory A. Newman,et al.  Three‐dimensional massively parallel electromagnetic inversion—I. Theory , 1997 .

[58]  Michael S. Zhdanov,et al.  Time-domain electromagnetic migration in the solution of inverse problems , 1997 .

[59]  Perry A. Eaton,et al.  3D ELECTROMAGNETIC INVERSION USING INTEGRAL EQUATIONS1 , 1989 .

[60]  J. T. Weaver,et al.  Induction in a thin sheet of variable conductance at the surface of a stratified earth — I. Two-dimensional theory , 1984 .

[61]  K. D. Paulsen,et al.  Three-dimensional finite, boundary, and hybrid element solutions of the Maxwell equations for lossy dielectric media , 1988 .

[62]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[63]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[64]  Michael S. Zhdanov,et al.  Methods for modelling electromagnetic fields Results from COMMEMI—the international project on the comparison of modelling methods for electromagnetic induction , 1997 .

[65]  R. Mackie,et al.  Three-dimensional magnetotelluric inversion using conjugate gradients , 1993 .

[66]  Alan C. Tripp,et al.  Electromagnetic scattering of large structures in layered earths using integral equations , 1995 .

[67]  Aria Abubakar,et al.  Nonlinear inversion of the electrode logging measurements in a deviated well , 2001 .

[68]  Dianne P. O'Leary,et al.  Conjugate Gradients and Related KMP Algorithms: The Beginnings , 1998 .

[69]  Q. Liu,et al.  Fast three-dimensional electromagnetic nonlinear inversion in layered media with a novel scattering approximation , 2004 .

[70]  J. T. Smith Conservative modeling of 3-D electromagnetic fields, Part I: Properties and error analysis , 1996 .

[71]  Ioan E. Lager,et al.  Generalized Cartesian finite elements , 1998 .

[72]  A. Kuvshinov,et al.  Electromagnetic field scattering in a heterogeneous Earth: A solution to the forward problem , 1995 .

[73]  Gene H. Golub,et al.  Matrix computations , 1983 .

[74]  Oszkar Biro,et al.  Finite-element analysis of controlled-source electromagnetic induction using Coulomb-gauged potentials , 2001 .

[75]  Robert G. Ellis 12. Joint 3-D Electromagnetic Inversion , 1999 .

[76]  Gregory A. Newman,et al.  Electromagnetic induction in a fully 3‐D anisotropic earth , 2000 .

[77]  G. W. Hohmann Three-Dimensional Induced Polarization and Electromagnetic Modeling , 1975 .

[78]  B. Sh. Singer,et al.  Integral equation approach based on contraction operators and krylov subspace optimisation , 2003 .

[79]  Gregory A. Newman,et al.  Chapter 8 Three-dimensional magnetotelluric modeling and inversion: Application to sub-salt imaging , 2002 .

[80]  Gregory A. Newman,et al.  Crosswell electromagnetic inversion using integral and differential equations , 1995 .

[81]  A. Raiche An Integral Equation Approach to Three-Dimensional Modelling , 1974 .

[82]  A. K. Agarwal,et al.  27. 3-D Finite-Difference Modeling of the Magnetic Field in Geoelectromagnetic Induction , 1999 .

[83]  Michael S. Zhdanov,et al.  Contraction integral equation method in three‐dimensional electromagnetic modeling , 2002 .

[84]  Geoffrey Pritchard,et al.  29. Three-Dimensional Inversion for Large-Scale Structure in a Spherical Domain , 1999 .

[85]  Alan C. Tripp,et al.  Inversion of diffusive transient electromagnetic data by a conjugate-gradient method , 1994 .

[86]  P. Wannamaker,et al.  Three-dimensional magnetotelluric modeling using difference equations­ Theory and comparisons to integral equation solutions , 1993 .

[87]  Michael S. Zhdanov,et al.  Quasi‐linear series in three‐dimensional electromagnetic modeling , 1997 .

[88]  Gregory A. Newman,et al.  Case History 3 D inversion of a scalar radio magnetotelluric field data set , 2003 .

[89]  William Rodi,et al.  Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion , 2001 .

[90]  Michael Commer,et al.  New advances in three dimensional transient electromagnetic inversion , 2004 .

[91]  B. Sh. Singer,et al.  Method for solution of Maxwell's equations in non-uniform media , 1995 .

[92]  Dominique Lesselier,et al.  Special Section on Electromagnetic Imaging and Inversion of the Earth Sub-Surface , 2000 .

[93]  Michael S. Zhdanov,et al.  Electromagnetic inversion using quasi-linear approximation , 2000 .

[94]  Zhiyi I. Zhang,et al.  3D resistivity mapping of airborne EM data , 2003 .

[95]  D. Oldenburg,et al.  METHODS FOR CALCULATING FRÉCHET DERIVATIVES AND SENSITIVITIES FOR THE NON‐LINEAR INVERSE PROBLEM: A COMPARATIVE STUDY1 , 1990 .

[96]  Yutaka Sasaki,et al.  Three-dimensional inversion of static-shifted magnetotelluric data , 2004 .

[97]  D. Livelybrooks,et al.  Program 3Dfeem: a multidimensional electromagnetic finite element model , 1993 .

[98]  Ki Ha Lee,et al.  3D interpretation of electromagnetic data using a modified extended Born approximation , 2003 .

[99]  J. Bladel,et al.  Electromagnetic Fields , 1985 .

[100]  G. W. Hohmann,et al.  An investigation of finite-element modeling for electrical and electromagnetic data in three dimensions , 1981 .

[101]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[102]  Michael S. Zhdanov,et al.  Focusing geophysical inversion images , 1999 .

[103]  Mark E. Everett,et al.  The transient Dst electromagnetic induction signal at satellite altitudes for a realistic 3‐D electrical conductivity in the crust and mantle , 2003 .

[104]  H. Utada,et al.  3-D modelling and analysis of Dst C-responses in the North Pacific Ocean region, revisited , 2005 .

[105]  B.Sh. Singer,et al.  Fast and stable method for 3-D modelling of electromagnetic field , 1997 .

[106]  Vladimir Druskin,et al.  New spectral Lanczos decomposition method for induction modeling in arbitrary 3-D geometry , 1999 .

[107]  Tsili Wang,et al.  3‐D electromagnetic anisotropy modeling using finite differences , 2001 .

[108]  Art Raiche,et al.  Efficient solution of full domain 3D electromagnetic modelling problems , 2000 .

[109]  Nils Olsen,et al.  Chapter 3 Modelling electromagnetic fields in a 3D spherical earth using a fast integral equation approach , 2002 .

[110]  D. Oldenburg,et al.  Approximate sensitivities for the electromagnetic inverse problem , 1996 .

[111]  Mark E. Everett,et al.  Geomagnetic induction in a heterogeneous sphere: fully three-dimensional test computations and the response of a realistic distribution of oceans and continents , 1998 .

[112]  R. L. Mackie,et al.  Three-dimensional magnetotelluric modelling and inversion , 1989, Proc. IEEE.

[113]  M. Everett,et al.  Geomagnetic induction in a heterogenous sphere: Azimuthally symmetric test computations and the response of an undulating 660‐km discontinuity , 1996 .

[114]  Yozo Hamano,et al.  A new time-domain approach for the electromagnetic induction problem in a three-dimensional heterogeneous earth , 2002 .

[115]  Dmitry B. Avdeev,et al.  High-Performance Three-Dimensional Electromagnetic Modelling Using Modified Neumann Series. Anisotropic Earth , 1997 .

[116]  G. Vasseur,et al.  Bimodal electromagnetic induction in non-uniform thin sheets with an application to the northern Pyrenean induction anomaly , 1977 .

[117]  Gregory A. Newman,et al.  Three-dimensional frequency-domain modeling of airborne electromagnetic responses , 1998 .

[118]  Michael S. Zhdanov,et al.  Minimum support nonlinear parametrization in the solution of a 3D magnetotelluric inverse problem , 2004 .

[119]  Gary D. Egbert,et al.  Three-dimensional inversion for Network-Magnetotelluric data , 2004 .

[120]  J. T. Weaver Mathematical methods for geo-electromagnetic induction , 1994 .

[121]  Michael Commer,et al.  A parallel finite-difference approach for 3D transient electromagnetic modeling with galvanic sources , 2004 .

[122]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[123]  Philip E. Wannamaker,et al.  Advances in three-dimensional magnetotelluric modeling using integral equations , 1991 .

[124]  W. Chew Waves and Fields in Inhomogeneous Media , 1990 .

[125]  D. Oldenburg,et al.  A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems , 2004 .

[126]  Yongwimon Lenbury,et al.  Three-dimensional magnetotelluric inversion : data-space method , 2005 .

[127]  Weng C. Chew,et al.  FOREWORD: Special section on electromagnetic characterization of buried obstacles , 2004 .

[128]  Zonghou Xiong,et al.  Electromagnetic modeling of 3-D structures by the method of system iteration using integral equations , 1992 .

[129]  Ryokei Yoshimura,et al.  Edge‐based finite element approach to the simulation of geoelectromagnetic induction in a 3‐D sphere , 2002 .

[130]  Gregory A. Newman,et al.  Solution strategies for two- and three-dimensional electromagnetic inverse problems , 2000 .

[131]  G. W. Hohmann,et al.  A finite-difference, time-domain solution for three-dimensional electromagnetic modeling , 1993 .

[132]  J. T. Weaver,et al.  Three-dimensional induction in a non-uniform thin sheet at the surface of a uniformly conducting earth , 1979 .

[133]  Alan C. Tripp,et al.  FDTD simulation of EM wave propagation in 3-D media , 1996 .

[134]  F. W. Jones,et al.  The Perturbation of Alternating Geomagnetic Fields by Three-Dimensional Conductivity Inhomogeneities , 1972 .

[135]  E. Haber,et al.  On optimization techniques for solving nonlinear inverse problems , 2000 .

[136]  D. Rankin,et al.  Three-dimensional modelling in magnetotelluric and magnetic variational sounding , 1977 .

[137]  P. Tarits,et al.  Contribution at satellite altitude of electromagnetically induced anomalies arising from a three-dimensional heterogeneously conducting Earth, using Sq as an inducing source field , 2002 .

[138]  T. Habashy,et al.  Rapid 2.5‐dimensional forward modeling and inversion via a new nonlinear scattering approximation , 1994 .

[139]  Robert G. Ellis,et al.  Electromagnetic Inversion Using the QMR-FFT Fast Integral Equation Method , 2002 .

[140]  Keith D. Paulsen,et al.  Nodal-based finite-element modeling of Maxwell's equations , 1992 .

[141]  Toshihiro Uchida,et al.  Stable 3-D inversion of MT data and its application to geothermal exploration , 2003 .

[142]  C. Lanczos Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .

[143]  V. Spichak,et al.  Artificial neural network inversion of magnetotelluric data in terms of three‐dimensional earth macroparameters , 2000 .

[144]  Paul T. Boggs,et al.  Solution Accelerators For Large-scale 3D Electromagnetic Inverse Problems , 2004 .

[145]  T. Habashy,et al.  Rapid numerical simulation of axisymmetric single‐well induction data using the extended Born approximation , 2001 .

[146]  A nonlinear inversion method for 3D electromagnetic imaging using adjoint fields , 1999 .

[147]  Gregory A. Newman,et al.  Transient electromagnetic responses of high-contrast prisms in a layered earth , 1988 .

[148]  Gregory A. Newman,et al.  High-Performance Three-Dimensional Electromagnetic Modelling Using Modified Neumann Series. Wide-Band Numerical Solution and Examples , 1997 .

[149]  E. Haber,et al.  Fast Simulation of 3D Electromagnetic Problems Using Potentials , 2000 .

[150]  J. Shadid,et al.  Three‐dimensional wideband electromagnetic modeling on massively parallel computers , 1996 .

[151]  Michael S. Zhdanov,et al.  Three-dimensional inversion of magnetotelluric data in complex geological structures , 2003 .