Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation.

A recurrent somatic activating mutation in the nonreceptor tyrosine kinase JAK2 (JAK2V617F) occurs in the majority of patients with the myeloproliferative disorders polycythemia vera, essential thrombocythemia, myelofibrosis with myeloid metaplasia, and, less commonly, chronic myelomonocytic leukemia. We do not understand the basis for the specificity of the JAK2V617F mutation in clonal disorders of the myeloid, but not lymphoid, lineage, nor has the basis for the pleiotropic phenotype of JAK2V617F-associated myeloproliferative disorders been delineated. However, the presence of the identical mutation in patients with related, but clinicopathologically distinct, myeloid disorders suggests that interactions between the JAK2V617F kinase and other signaling molecules may influence the phenotype of hematopoietic progenitors expressing JAK2V617F. Here, we show that coexpression of the JAK2V617F mutant kinase with a homodimeric Type I cytokine receptor, the erythropoietin receptor (EpoR), the thrombopoietin receptor, or the granulocyte colony-stimulating-factor receptor, is necessary for transformation of hematopoietic cells to growth-factor independence and for hormone-independent activation of JAK-STAT signaling. Furthermore, EpoR mutations that impair erythropoietin-mediated JAK2 or STAT5 activation also impair transformation mediated by the JAK2V617F kinase, indicating that JAK2V617F requires a cytokine receptor scaffold for its transforming and signaling activities. Our results reveal the molecular basis for the prevalence of JAK2V617F in diseases of myeloid lineage cells that express these Type I cytokine receptors but not in lymphoid lineage cells that do not.

[1]  J. Cleveland,et al.  Inactivation of erythropoietin receptor function by point mutations in a region having homology with other cytokine receptors , 1993, Molecular and cellular biology.

[2]  H. Lodish,et al.  Cytokine receptor signal transduction and the control of hematopoietic cell development. , 1996, Annual review of cell and developmental biology.

[3]  T. Naoe,et al.  Tandem-duplicated Flt3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL-3-dependent cell lines , 2000, Oncogene.

[4]  T. Golub,et al.  The TEL/platelet-derived growth factor β receptor (PDGFβR) fusion in chronic myelomonocytic leukemia is a transforming protein that self-associates and activates PDGFβR kinase-dependent signaling pathways , 1996 .

[5]  N. Aoki,et al.  Activation of the mitogen-activated protein kinase pathway by the erythropoietin receptor. , 1994, The Journal of biological chemistry.

[6]  P. Campbell,et al.  Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders , 2005, The Lancet.

[7]  Peter Marynen,et al.  A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. , 2003, The New England journal of medicine.

[8]  Sandra A. Moore,et al.  Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. , 2005, Cancer cell.

[9]  D. Smedley,et al.  ZNF198-FGFR1 transforms Ba/F3 cells to growth factor independence and results in high level tyrosine phosphorylation of STATS 1 and 5. , 1999, Neoplasia.

[10]  J. Stephenson,et al.  Translocation of c-abl oncogene correlates with the presence of a Philadelphia chromosome in chronic myelocytic leukaemia , 1983, Nature.

[11]  C. Miething,et al.  Sensitivity toward tyrosine kinase inhibitors varies between different activating mutations of the FLT3 receptor. , 2003, Blood.

[12]  H. Lodish,et al.  Identification of a novel pathway important for proliferation and differentiation of primary erythroid progenitors. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[13]  H. Kitayama,et al.  Constitutively activating mutations of c-kit receptor tyrosine kinase confer factor-independent growth and tumorigenicity of factor-dependent hematopoietic cell lines. , 1995, Blood.

[14]  R. Berger,et al.  Fusion of Huntingtin Interacting Protein 1 to Platelet-Derived Growth Factor β Receptor (PDGFβR) in Chronic Myelomonocytic Leukemia With t(5;7)(q33;q11.2) , 1998 .

[15]  G. Daley,et al.  Transformation of an interleukin 3-dependent hematopoietic cell line by the chronic myelogenous leukemia-specific P210bcr/abl protein. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[16]  H. Lodish,et al.  Ligand-independent oligomerization of cell-surface erythropoietin receptor is mediated by the transmembrane domain , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Mario Cazzola,et al.  A gain-of-function mutation of JAK2 in myeloproliferative disorders. , 2005, The New England journal of medicine.

[18]  H. Lodish,et al.  The N-terminal domain of Janus kinase 2 is required for Golgi processing and cell surface expression of erythropoietin receptor. , 2001, Molecular cell.

[19]  K. Liedl,et al.  Prediction of the structure of human Janus kinase 2 (JAK2) comprising the two carboxy-terminal domains reveals a mechanism for autoregulation. , 2001, Protein engineering.

[20]  T. Golub,et al.  Oligomerization of the ABL tyrosine kinase by the Ets protein TEL in human leukemia , 1996, Molecular and cellular biology.

[21]  P. Marynen,et al.  Fusion of TEL, the ETS-variant gene 6 (ETV6), to the receptor-associated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia. , 1997, Blood.

[22]  J. Aster,et al.  Transformation of hematopoietic cell lines to growth‐factor independence and induction of a fatal myelo‐ and lymphoproliferative disease in mice by retrovirally transduced TEL/JAK2 fusion genes , 1998, The EMBO journal.

[23]  T. Naoe,et al.  Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. , 2001, Blood.

[24]  M. Loh,et al.  The JAK2V617F activating mutation occurs in chronic myelomonocytic leukemia and acute myeloid leukemia, but not in acute lymphoblastic leukemia or chronic lymphocytic leukemia. , 2005, Blood.

[25]  H. Kaneko,et al.  Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. , 1996, Leukemia.

[26]  S. Constantinescu,et al.  Active and inactive orientations of the transmembrane and cytosolic domains of the erythropoietin receptor dimer. , 2003, Molecular cell.

[27]  U Klingmüller,et al.  Multiple tyrosine residues in the cytosolic domain of the erythropoietin receptor promote activation of STAT5. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Stefan N. Constantinescu,et al.  A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera , 2005, Nature.

[29]  S. Morris,et al.  Nucleophosmin-Anaplastic Lymphoma Kinase of Large-Cell Anaplastic Lymphoma Is a Constitutively Active Tyrosine Kinase That Utilizes Phospholipase C-γ To Mediate Its Mitogenicity , 1998, Molecular and Cellular Biology.

[30]  R Berger,et al.  A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. , 1997, Science.

[31]  R. Gregory,et al.  Signal transduction in the erythropoietin receptor system. , 1999, Experimental cell research.

[32]  D. Link,et al.  Specific Signals Generated by the Cytoplasmic Domain of the Granulocyte Colony-Stimulating Factor (G-CSF) Receptor Are Not Required for G-CSF–Dependent Granulocytic Differentiation , 1998 .

[33]  Harvey F. Lodish,et al.  Lnk Inhibits Tpo–mpl Signaling and Tpo-mediated Megakaryocytopoiesis , 2004, The Journal of experimental medicine.

[34]  J. Kutok,et al.  H4(D10S170), a gene frequently rearranged in papillary thyroid carcinoma, is fused to the platelet-derived growth factor receptor beta gene in atypical chronic myeloid leukemia with t(5;10)(q33;q22). , 2001, Blood.

[35]  O. Silvennoinen,et al.  Regulation of the Jak2 Tyrosine Kinase by Its Pseudokinase Domain , 2000, Molecular and Cellular Biology.