How to Make $T$-Transitive a Proximity Relation

Three ways to approximate a proximity relation <i>R</i> (i.e., a reflexive and symmetric fuzzy relation) by a <i>T</i> -transitive one where <i>T</i> is a continuous Archimedean <i>t</i>-norm are given. The first one aggregates the transitive closure <i>R</i> <i>macr</i> of <i>R</i> with a (maximal) <i>T</i>-transitive relation <i>B</i> contained in <i>R</i> . The second one computes the closest homotecy of <i>R</i> <i>macr</i> or <i>B</i> to better fit their entries with the ones of <i>R</i>. The third method uses nonlinear programming techniques to obtain the best approximation with respect to the Euclidean distance for <i>T</i> the Lukasiewicz or the product <i>t</i>-norm. The previous methods do not apply for the minimum <i>t</i>-norm. An algorithm to approximate a given proximity relation by a min-transitive relation (a similarity) is given in the last section of the paper.

[1]  J. Aczél,et al.  Lectures on Functional Equations and Their Applications , 1968 .

[2]  Lotfi A. Zadeh,et al.  Similarity relations and fuzzy orderings , 1971, Inf. Sci..

[3]  K. Hirota Concepts of probabilistic sets , 1981 .

[4]  L. Valverde On the structure of F-indistinguishability operators , 1985 .

[5]  W. Pedrycz,et al.  Fuzzy Relation Equations and Their Applications to Knowledge Engineering , 1989, Theory and Decision Library.

[6]  J. Jacas Similarity relations: the calculation of minimal generating families , 1990 .

[7]  Enric Trillas,et al.  On Fuzzy Conditionals Generalising the Material Conditional , 1992, IPMU.

[8]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[9]  Bernard De Baets,et al.  Fuzzy Relations and Applications , 1994 .

[10]  Juan Luis Castro,et al.  Non-monotonic fuzzy reasoning , 1998, Fuzzy Sets Syst..

[11]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[12]  Sujeet Shenoi,et al.  Proximity relations in the fuzzy relational database model , 1999 .

[13]  Radko Mesiar,et al.  Triangular Norms , 2000, Trends in Logic.

[14]  J. Recasens,et al.  Fuzzy Equivalence Relations: Advanced Material , 2000 .

[15]  Ranjit Biswas,et al.  On extended fuzzy relational database model with proximity relations , 2001, Fuzzy Sets Syst..

[16]  Miin-Shen Yang,et al.  Cluster analysis based on fuzzy relations , 2001, Fuzzy Sets Syst..

[17]  Bernard De Baets,et al.  Algorithms for the computation of T-transitive closures , 2002, IEEE Trans. Fuzzy Syst..

[18]  Jordi Recasens,et al.  Aggregation of T‐transitive relations , 2003, Int. J. Intell. Syst..

[19]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.