Online bin packing with cardinality constraints revisited

Bin packing with cardinality constraints is a bin packing problem where an upper bound k \geq 2 on the number of items packed into each bin is given, in addition to the standard constraint on the total size of items packed into a bin. We study the online scenario where items are presented one by one. We analyze it with respect to the absolute competitive ratio and prove tight bounds of 2 for any k \geq 4. We show that First Fit also has an absolute competitive ratio of 2 for k=4, but not for larger values of k, and we present a complete analysis of its asymptotic competitive ratio for all values of k \geq 5. Additionally, we study the case of small $k$ with respect to the asymptotic competitive ratio and the absolute competitive ratio.

[1]  Leah Epstein,et al.  On the absolute approximation ratio for First Fit and related results , 2012, Discret. Appl. Math..

[2]  Leah Epstein Online Bin Packing with Cardinality Constraints , 2005, ESA.

[3]  D. T. Lee,et al.  On-Line Bin Packing in Linear Time , 1989, J. Algorithms.

[4]  Hans Kellerer,et al.  Algorithms for on-line bin-packing problems with cardinality constraints , 2004, Discret. Appl. Math..

[5]  Hiroshi Fujiwara,et al.  Improved lower bounds for the online bin packing problem with cardinality constraints , 2015, J. Comb. Optim..

[6]  Leah Epstein,et al.  Class constrained bin packing revisited , 2010, Theor. Comput. Sci..

[7]  Andrew Chi-Chih Yao,et al.  Resource Constrained Scheduling as Generalized Bin Packing , 1976, J. Comb. Theory A.

[8]  Jeffrey D. Ullman,et al.  The performance of a memory allocation algorithm , 1971 .

[9]  Andrew Chi-Chih Yao,et al.  New Algorithms for Bin Packing , 1978, JACM.

[10]  David S. Johnson,et al.  Near-optimal bin packing algorithms , 1973 .

[11]  Herb Schwetman,et al.  Errata: `` Analysis of Several Task-Scheduling Algorithms for a Model of Multiprogramming Computer Systems'' , 1977, JACM.

[12]  Leah Epstein,et al.  AFPTAS Results for Common Variants of Bin Packing: A New Method for Handling the Small Items , 2009, SIAM J. Optim..

[13]  József Békési,et al.  New lower bounds for certain classes of bin packing algorithms , 2012, Theor. Comput. Sci..

[14]  David S. Johnson,et al.  Fast Algorithms for Bin Packing , 1974, J. Comput. Syst. Sci..

[15]  Hadas Shachnai,et al.  Tight Bounds for Online Class-Constrained Packing , 2002, LATIN.

[16]  Jeffrey D. Ullman,et al.  Worst-Case Performance Bounds for Simple One-Dimensional Packing Algorithms , 1974, SIAM J. Comput..

[17]  Steven S. Seiden,et al.  On the online bin packing problem , 2001, JACM.

[18]  André van Vliet,et al.  An Improved Lower Bound for On-Line Bin Packing Algorithms , 1992, Inf. Process. Lett..

[19]  Herb Schwetman,et al.  Analysis of Several Task-Scheduling Algorithms for a Model of Multiprogramming Computer Systems , 1975, JACM.

[20]  Hans Kellerer,et al.  Approximation schemes for ordered vector packing problems , 2001, RANDOM-APPROX.

[21]  Frank M. Liang A Lower Bound for On-Line Bin Packing , 1980, Inf. Process. Lett..

[22]  Tami Tamir,et al.  Polynominal time approximation schemes for class-constrained packing problem , 2000, APPROX.

[23]  Jirí Sgall,et al.  First Fit bin packing: A tight analysis , 2013, STACS.

[24]  Eduardo C. Xavier,et al.  The Class Constrained Bin Packing Problem with Applications to Video-on-Demand , 2006, COCOON.

[25]  Hans Kellerer,et al.  Cardinality constrained bin‐packing problems , 1999, Ann. Oper. Res..