ABC Samplers

This Chapter, "ABC Samplers", is to appear in the forthcoming Handbook of Approximate Bayesian Computation (2018). It details the main ideas and algorithms used to sample from the ABC approximation to the posterior distribution, including methods based on rejection/importance sampling, MCMC and sequential Monte Carlo.

[1]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[2]  M. Beaumont Estimation of population growth or decline in genetically monitored populations. , 2003, Genetics.

[3]  C. Geyer,et al.  Annealing Markov chain Monte Carlo with applications to ancestral inference , 1995 .

[4]  Daniel Wegmann,et al.  Likelihood-Free Inference in High-Dimensional Models , 2015, Genetics.

[5]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[6]  Mike West,et al.  Sequential Monte Carlo with Adaptive Weights for Approximate Bayesian Computation , 2015, 1503.07791.

[7]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[8]  Jun S. Liu,et al.  Rejection Control and Sequential Importance Sampling , 1998 .

[9]  Aaron Smith,et al.  The use of a single pseudo-sample in approximate Bayesian computation , 2014, Stat. Comput..

[10]  Arnaud Guyader,et al.  New insights into Approximate Bayesian Computation , 2012, 1207.6461.

[11]  C C Drovandi,et al.  Estimation of Parameters for Macroparasite Population Evolution Using Approximate Bayesian Computation , 2011, Biometrics.

[12]  Dennis Prangle,et al.  Lazy ABC , 2014, Stat. Comput..

[13]  W. Gilks,et al.  Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .

[14]  S. Coles,et al.  Inference for Stereological Extremes , 2007 .

[15]  David Welch,et al.  Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems , 2009, Journal of The Royal Society Interface.

[16]  S. Sisson,et al.  A comparative review of dimension reduction methods in approximate Bayesian computation , 2012, 1202.3819.

[17]  Richard G. Everitt,et al.  A rare event approach to high-dimensional approximate Bayesian computation , 2016, Statistics and Computing.

[18]  J.-M. Marin,et al.  Relevant statistics for Bayesian model choice , 2011, 1110.4700.

[19]  Peter Neal,et al.  Efficient likelihood-free Bayesian Computation for household epidemics , 2012, Stat. Comput..

[20]  Nicolas Chopin,et al.  Divide and conquer in ABC: Expectation-Progagation algorithms for likelihood-free inference , 2015, 1512.00205.

[21]  David A. Campbell,et al.  Transdimensional approximate Bayesian computation for inference on invasive species models with latent variables of unknown dimension , 2015, Comput. Stat. Data Anal..

[22]  Ajay Jasra,et al.  Parameter Estimation in Hidden Markov Models With Intractable Likelihoods Using Sequential Monte Carlo , 2013, 1311.4117.

[23]  Erlis Ruli,et al.  Approximate Bayesian Computation by Modelling Summary Statistics in a Quasi-likelihood Framework , 2015, 1505.03350.

[24]  N. Chopin A sequential particle filter method for static models , 2002 .

[25]  L. Excoffier,et al.  Efficient Approximate Bayesian Computation Coupled With Markov Chain Monte Carlo Without Likelihood , 2009, Genetics.

[26]  Kerrie Mengersen,et al.  Approximating the likelihood in approximate Bayesian computation , 2018, 1803.06645.

[27]  Christophe Andrieu,et al.  Theoretical and methodological aspects of MCMC computations with noisy likelihoods , 2018 .

[28]  Yanan Fan,et al.  Likelihood-Free MCMC , 2011 .

[29]  Radford M. Neal Annealed importance sampling , 1998, Stat. Comput..

[30]  Christian P. Robert,et al.  On parameter estimation with the Wasserstein distance , 2017, Information and Inference: A Journal of the IMA.

[31]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[32]  Christopher C Drovandi,et al.  ABC and Indirect Inference , 2018, Handbook of Approximate Bayesian Computation.

[33]  Laurent E. Calvet,et al.  Accurate Methods for Approximate Bayesian Computation Filtering , 2015 .

[34]  Paul Marjoram,et al.  Markov chain Monte Carlo without likelihoods , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Christian P Robert,et al.  Bayesian computation via empirical likelihood , 2012, Proceedings of the National Academy of Sciences.

[36]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[37]  Raul Tempone,et al.  Multilevel Monte Carlo in approximate Bayesian computation , 2017, Stochastic Analysis and Applications.

[38]  Paul Fearnhead,et al.  Constructing summary statistics for approximate Bayesian computation: semi‐automatic approximate Bayesian computation , 2012 .

[39]  Arnaud Doucet,et al.  An adaptive sequential Monte Carlo method for approximate Bayesian computation , 2011, Statistics and Computing.

[40]  Aidan C. Daly,et al.  Hodgkin–Huxley revisited: reparametrization and identifiability analysis of the classic action potential model with approximate Bayesian methods , 2015, Royal Society Open Science.

[41]  Robert Leenders,et al.  Hamiltonian ABC , 2015, UAI.

[42]  Julien Cornebise,et al.  On optimality of kernels for approximate Bayesian computation using sequential Monte Carlo , 2011, Statistical applications in genetics and molecular biology.

[43]  Mark M. Tanaka,et al.  Sequential Monte Carlo without likelihoods , 2007, Proceedings of the National Academy of Sciences.

[44]  Richard G. Everitt,et al.  Delayed Acceptance ABC-SMC , 2017, J. Comput. Graph. Stat..

[45]  Ruth E. Baker,et al.  Multilevel rejection sampling for approximate Bayesian computation , 2017, Comput. Stat. Data Anal..

[46]  S. Sisson,et al.  Diagnostic tools for approximate Bayesian computation using the coverage property , 2013, 1301.3166.

[47]  P. Donnelly,et al.  Inferring coalescence times from DNA sequence data. , 1997, Genetics.

[48]  Nicolas Chopin,et al.  Improving Approximate Bayesian Computation via Quasi-Monte Carlo , 2017, Journal of Computational and Graphical Statistics.

[49]  Sumeetpal S. Singh,et al.  Parameter Estimation for Hidden Markov Models with Intractable Likelihoods , 2011 .

[50]  Jean-Jacques Forneron,et al.  A Likelihood-Free Reverse Sampler of the Posterior Distribution , 2015, 1506.04017.

[51]  Joseph Fourier,et al.  Approximate Bayesian Computation: a non-parametric perspective , 2013 .

[52]  Daniel Silk,et al.  Optimizing Threshold - Schedules for Approximate Bayesian Computation Sequential Monte Carlo Samplers: Applications to Molecular Systems , 2012 .

[53]  M. Feldman,et al.  Population growth of human Y chromosomes: a study of Y chromosome microsatellites. , 1999, Molecular biology and evolution.

[54]  S. A. Sisson,et al.  Overview of Approximate Bayesian Computation , 2018, 1802.09720.

[55]  ABootstrapLikelihoodapproachtoBayesianComputation,et al.  A Bootstrap Likelihood Approach to Bayesian Computation , 2015, 1510.07287.

[56]  Stuart Barber,et al.  The Rate of Convergence for Approximate Bayesian Computation , 2013, 1311.2038.

[57]  R. Wilkinson Approximate Bayesian computation (ABC) gives exact results under the assumption of model error , 2008, Statistical applications in genetics and molecular biology.

[58]  C. Von Kerczek Discussion of a paper by P. Friedmann, C. E. Hammond and Tye‐Hsin Woo , 1978 .

[59]  S. Kou,et al.  Equi-energy sampler with applications in statistical inference and statistical mechanics , 2005, math/0507080.

[60]  C. Robert,et al.  Inference in generative models using the Wasserstein distance , 2017, 1701.05146.

[61]  Genya Kobayashi,et al.  Generalized multiple-point Metropolis algorithms for approximate Bayesian computation , 2015 .

[62]  Dennis Prangle,et al.  Adapting the ABC distance function , 2015, 1507.00874.

[63]  Eric Moulines,et al.  Comparison of resampling schemes for particle filtering , 2005, ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005..

[64]  Denys Pommeret,et al.  Likelihood-free parallel tempering , 2011, Stat. Comput..

[65]  Anthony N. Pettitt,et al.  Likelihood-free Bayesian estimation of multivariate quantile distributions , 2011, Comput. Stat. Data Anal..

[66]  S. Wood Statistical inference for noisy nonlinear ecological dynamic systems , 2010, Nature.

[67]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[68]  C. Andrieu,et al.  The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.

[69]  Nicolas Chopin,et al.  Expectation Propagation for Likelihood-Free Inference , 2011, 1107.5959.

[70]  Lucy Marshall,et al.  The ensemble Kalman filter is an ABC algorithm , 2012, Stat. Comput..

[71]  Gareth W. Peters,et al.  On sequential Monte Carlo, partial rejection control and approximate Bayesian computation , 2008, Statistics and Computing.