A framework for optimization under limited information

In many real world problems, optimisation decisions have to be made with limited information. The decision maker may have no a priori or posteriori data about the often nonconvex objective function except from on a limited number of data points. The scarcity of data may be due to high cost of observation or fast-changing nature of the underlying system. This paper presents a “black-box” optimisation framework that takes into account the information collection, estimation, and optimisation aspects in a holistic and structured manner. Explicitly quantifying the observations at each optimisation step using the entropy measure from information theory, the often nonconvex-objective function to be optimised is modelled and estimated by adopting a Bayesian approach and using Gaussian processes as a state-of-the-art regression method. The resulting iterative scheme allows the decision maker to address the problem by expressing preferences for each aspect quantitatively and concurrently.

[1]  TANSU ALPCAN,et al.  A Risk-Based Approach to Optimisation under Limited Information , 2012 .

[2]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[3]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[4]  J. F. Price,et al.  On descent from local minima , 1971 .

[5]  Iain Murray Introduction To Gaussian Processes , 2008 .

[6]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[7]  Tansu Alpcan,et al.  A system performance approach to OSNR optimization in optical networks , 2010, IEEE Transactions on Communications.

[8]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[9]  Kaare Brandt Petersen,et al.  The Matrix Cookbook , 2006 .

[10]  Oleksandr Romanko,et al.  Normalization and Other Topics in Multi­Objective Optimization , 2006 .

[11]  M Rinehart,et al.  The value of sequential information in shortest path optimization , 2010, Proceedings of the 2010 American Control Conference.

[12]  Anthony Widjaja,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.

[13]  Nikolaos V. Sahinidis,et al.  Optimization under uncertainty: state-of-the-art and opportunities , 2004, Comput. Chem. Eng..

[14]  Oleksandr Romanko,et al.  Discussions on Normalization and Other Topics in Multi-Objective Optimization Algorithmics Group, Fields Industrial Problem Solving Workshop , 2006 .

[15]  Art Lew,et al.  Dynamic Programming: an overview , 2006 .

[16]  Burr Settles,et al.  Active Learning Literature Survey , 2009 .

[17]  Phillip Boyle,et al.  Gaussian Processes for Regression and Optimisation , 2007 .

[18]  Keith R. Thompson,et al.  Implementation of gaussian process models for non-linear system identification , 2009 .

[19]  R. Tempo,et al.  Randomized Algorithms for Analysis and Control of Uncertain Systems , 2004 .

[20]  D. Ackley A connectionist machine for genetic hillclimbing , 1987 .

[21]  N. Zheng,et al.  Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models , 2006, J. Glob. Optim..

[22]  R. Bellman Dynamic programming. , 1957, Science.

[23]  B. John Oommen,et al.  On the optimal search problem: the case when the target distribution is unknown , 1997, Proceedings 17th International Conference of the Chilean Computer Science Society.

[24]  Michael E. Tipping Bayesian Inference: An Introduction to Principles and Practice in Machine Learning , 2003, Advanced Lectures on Machine Learning.

[25]  J. Pierce,et al.  A New Look at the Relation between Information Theory and Search Theory , 1978 .

[26]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[27]  Klaus Obermayer,et al.  Gaussian process regression: active data selection and test point rejection , 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium.

[28]  Derong Liu The Mathematics of Internet Congestion Control , 2005, IEEE Transactions on Automatic Control.

[29]  M. Sniedovich,et al.  A new look at Bellman's principle of optimality , 1986 .

[30]  David J. C. MacKay,et al.  Information-Based Objective Functions for Active Data Selection , 1992, Neural Computation.

[31]  Donald R. Jones,et al.  A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..

[32]  Christopher K. I. Williams,et al.  Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .

[33]  F. H. Branin Widely convergent method for finding multiple solutions of simultaneous nonlinear equations , 1972 .

[34]  Paul M. B. Vitányi,et al.  An Introduction to Kolmogorov Complexity and Its Applications, Third Edition , 1997, Texts in Computer Science.

[35]  Anne Auger,et al.  When Do Heavy-Tail Distributions Help? , 2006, PPSN.

[36]  Rob A. Rutenbar,et al.  Simulated annealing algorithms: an overview , 1989, IEEE Circuits and Devices Magazine.

[37]  Rayadurgam Srikant,et al.  The Mathematics of Internet Congestion Control , 2003 .

[38]  R. Tempo,et al.  Probabilistic robustness analysis: explicit bounds for the minimum number of samples , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[39]  Tansu Alpcan,et al.  Power control for multicell CDMA wireless networks: A team optimization approach , 2005, Third International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt'05).

[40]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[41]  Thomas Bäck,et al.  Evolutionary Algorithms in Theory and Practice , 1996 .

[42]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[43]  M. Sniedovich Dijkstra's algorithm revisited: the dynamic programming connexion , 2006 .

[44]  E. Jaynes Entropy and Search Theory , 1985 .

[45]  Carl E. Rasmussen,et al.  State-Space Inference and Learning with Gaussian Processes , 2010, AISTATS.

[46]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[47]  Rayadurgam Srikant,et al.  The Mathematics of Internet Congestion Control (Systems and Control: Foundations and Applications) , 2004 .

[48]  Neil D. Lawrence,et al.  Fast Sparse Gaussian Process Methods: The Informative Vector Machine , 2002, NIPS.

[49]  D. V. Gokhale,et al.  Entropy expressions and their estimators for multivariate distributions , 1989, IEEE Trans. Inf. Theory.