Obituary: Ivan Rival

[1]  Ivan Rival,et al.  Dimension invariance of subdivisions , 2001, Bulletin of the Australian Mathematical Society.

[2]  Alexandr V. Kostochka,et al.  The pagenumber of spherical lattices is unbounded , 2001 .

[3]  Andrzej Kisielewicz,et al.  The Complexity of Upward Drawings on Spheres , 1997 .

[4]  Nejib Zaguia,et al.  Approximating the Number of Linear Extensions , 1997, Theor. Comput. Sci..

[5]  Ivan Rival,et al.  Series-Parallel Planar Ordered Sets Have Pagenumber Two , 1996, GD.

[6]  Ivan Rival,et al.  Dimension two, fixed points and dismantlable ordered sets , 1996 .

[7]  Maurice Pouzet,et al.  A generalized permutahedron , 1995 .

[8]  Nejib Zaguia,et al.  Automorphisms, isotone self-maps and cycle-free orders , 1995, Discret. Math..

[9]  Nejib Zaguia,et al.  A CORRECTION TO SMALL REPRESENTATIONS OF FINITE DISTRIBUTIVE LATTICES AS CONGRUENCE LATTICES , 1998 .

[10]  Richard J. Nowakowski,et al.  The endomorphism spectrum of an ordered set , 1995 .

[11]  Nejib Zaguia,et al.  Images of simple lattice polynomials , 1995 .

[12]  Nejib Zaguia,et al.  Perpendicular orders , 1995, Discret. Math..

[13]  Nejib Zaguia,et al.  Upward Drawing on the Plane Grid Using Less Ink , 1994, GD.

[14]  S. Mehdi Hashemi,et al.  Upward Drawings to Fit Surfaces , 1994, ORDAL.

[15]  Dmitry Fon-Der-Flaass,et al.  Collecting Information in Graded Ordered Sets , 1993, Parallel Process. Lett..

[16]  Andrzej Kisielewicz,et al.  Every triangle-free planar graph has a planar upward drawing , 1993 .

[17]  Ivan Rival,et al.  Problems About Planar Orders , 1993 .

[18]  Ivan Rival,et al.  Reading, Drawing, and Order , 1993 .

[19]  Jorge Urrutia,et al.  Lattices contained in planar orders are planar , 1992 .

[20]  Jorge Urrutia,et al.  Representing orders by moving figures in space , 1992, Discret. Math..

[21]  Jorge Urrutia,et al.  Light sources, obstructions and spherical orders , 1992, Discret. Math..

[22]  Ivan Rival,et al.  Matroid Applications: Algebraic Aspects of Partition Lattices , 1992 .

[23]  Ivan Rival,et al.  Order, genus, and diagram invariance , 1991 .

[24]  Andrzej Pelc,et al.  Motion Planning, Two-Directional Point Representations, and Ordered Sets , 1991, SIAM J. Discret. Math..

[25]  Wei-Ping Liu,et al.  Enumerating orientations of ordered sets , 1991, Discret. Math..

[26]  Wei-Ping Liu,et al.  Inversions, cuts, and orientations , 1991, Discret. Math..

[27]  Andrzej Pelc,et al.  Orders with Level Diagrams , 1991, Eur. J. Comb..

[28]  Giuseppe Di Battista,et al.  Bipartite Graphs, Upward Drawings, and Planarity , 1990, Inf. Process. Lett..

[29]  George Steiner,et al.  Permutation Schedules for Flow Shops with Precedence Constraints , 1990, Oper. Res..

[30]  Ivan Rival,et al.  Clones, order varieties, near unanimity functions and holes , 1990 .

[31]  Klaus Reuter,et al.  Genus of Order and Lattices , 1990, WG.

[32]  Andrzej Pelc,et al.  Crooked diagrams with few slopes , 1990 .

[33]  Andrzej Pelc,et al.  Drawing orders with few slopes , 1990, Discret. Math..

[34]  Jorge Urrutia,et al.  Representing orders on the plane by translating points and lines , 1990, Discret. Appl. Math..

[35]  Andrzej Pelc,et al.  Unfolding Weighted Consensus Orders into Consistent Numerical Scales , 1990 .

[36]  Andrzej Pelc,et al.  Planar ordered sets of width two , 1990 .

[37]  Ivan Rival,et al.  Dilworth’s Covering Theorem for Modular Lattices , 1990 .

[38]  Jorge Urrutia,et al.  Galleries, Light Matchings and Visibility Graphs , 1989, WADS.

[39]  Hans-Jürgen Bandelt,et al.  Diagrams, orientations, and varieties , 1989 .

[40]  I. Rival Graphical Data Structures for Ordered Sets , 1989 .

[41]  Maurice Pouzet,et al.  Is there a diagram invariant? , 1989, Discret. Math..

[42]  J. Urrutia,et al.  Representing orders on the plane by translating convex figures , 1988 .

[43]  Richard J. Nowakowski,et al.  Retract rigid cartesian products of graphs , 1988, Discret. Math..

[44]  P. Hell,et al.  Absolute Retracts and Varieties of Reflexive Graphs , 1987, Canadian Journal of Mathematics.

[45]  Zbigniew Lonc,et al.  Chains, antichains, and fibres , 1987, J. Comb. Theory, Ser. A.

[46]  Nejib Zaguia,et al.  Greedy linear extensions with constraints , 1987, Discret. Math..

[47]  Roland Jégou,et al.  The diagram invariant problem for planar lattices , 1987 .

[48]  Maurice Pouzet,et al.  A classification of reflexive graphs: the use of «holes» , 1986 .

[49]  Ivan Rival,et al.  Antichains and Finite Sets that Meet all Maximal Chains , 1986, Canadian Journal of Mathematics.

[50]  Nejib Zaguia,et al.  Constructing greedy linear extensions by interchanging chains , 1986 .

[51]  Ivan Rival,et al.  Subdiagrams equal in number to their duals , 1986 .

[52]  Peter Nevermann,et al.  Holes in ordered sets , 1985, Graphs Comb..

[53]  Ivan Rival,et al.  Examples of Jump-Critical Ordered Sets , 1985 .

[54]  Mohamed H. El-Zahar,et al.  Greedy linear extensions to minimize jumps , 1985, Discret. Appl. Math..

[55]  Maurice Pouzet,et al.  Every countable lattice is a retract of a direct product of chains , 1984 .

[56]  Maurice Pouzet,et al.  Quotients of complete ordered sets , 1983 .

[57]  Ivan Rival Optimal linear extensions by interchanging chains , 1983 .

[58]  Dwight Duffus,et al.  Graphs orientable as distributive lattices , 1983 .

[59]  Richard J. Nowakowski,et al.  The smallest graph variety containing all paths , 1983, Discret. Math..

[60]  Brian A. Davey,et al.  Exponents of lattice-ordered algebras , 1982 .

[61]  I. Rival,et al.  A Ramsey-type theorem for traceable graphs☆ , 1982 .

[62]  P. Winkler,et al.  Minimizing setups for cycle-free ordered sets , 1982 .

[63]  Richard J. Nowakowski,et al.  On a class of isometric subgraphs of a graph , 1982, Comb..

[64]  Ivan Rival,et al.  How many four-generated simple lattices , 1982 .

[65]  Ivan Rival,et al.  Pictures in Lattice Theory , 1982 .

[66]  Ivan Rival,et al.  The Retract Construction , 1982 .

[67]  Maurice Pouzet,et al.  Which ordered sets have a complete linear extension , 1981 .

[68]  Ivan Rival,et al.  On the ubiquity of herringbones in finitely generated lattices , 1981 .

[69]  Dwight Duffus,et al.  A structure theory for ordered sets , 1981, Discret. Math..

[70]  Rudolf Wille,et al.  The smallest order variety containing all chains , 1981, Discrete Mathematics.

[71]  Complete ordered sets with no infinite antichains , 1981, Discret. Math..

[72]  Dwight Duffus,et al.  A note on weak embeddings of distributive lattices , 1980 .

[73]  Tibor Bisztriczky,et al.  Continuous, slope-preserving maps of simple closed curves , 1980 .

[74]  Dwight Duffus,et al.  Retracts and the Fixed Point Problem for Finite Partially Ordered Sets , 1980, Canadian Mathematical Bulletin.

[75]  Ivan Rival,et al.  On the Adjacency of Vertices to the Vertices of an Infinite Subgraph , 1980 .

[76]  Ivan Rival The Problem of Fixed Points in Ordered Sets , 1980 .

[77]  Miklós Simonovits,et al.  Spanning retracts of a partially ordered set , 1980, Discret. Math..

[78]  Anders Björner,et al.  A note on fixed points in semimodular lattices , 1980, Discret. Math..

[79]  Béla Bollobás,et al.  The maximal size of the covering graph of a lattice , 1979 .

[80]  Richard J. Nowakowski,et al.  Fixed-edge theorem for graphs with loops , 1979, J. Graph Theory.

[81]  Dwight Duffus,et al.  Retracts of partially ordered sets , 1979, Journal of the Australian Mathematical Society.

[82]  Ivan Rival,et al.  Lattice varieties covering the smallest nonmodular variety. , 1979 .

[83]  I. Rabinovitch,et al.  The rank of a distributive lattice , 1979, Discret. Math..

[84]  Ivan Rival,et al.  Planar Sublattices of a Free Lattice. I , 1978, Canadian Journal of Mathematics.

[85]  Ivan Rival,et al.  An exchange property for modular lattices , 1978 .

[86]  Dwight Duffus,et al.  Separable Subsets of a Finite Lattice , 1978, J. Comb. Theory, Ser. A.

[87]  Dwight Duffus,et al.  A Logarithmic Property for Exponents of Partially Ordered Sets , 1978, Canadian Journal of Mathematics.

[88]  Dwight Duffus,et al.  Structure Results for Function Lattices , 1978, Canadian Journal of Mathematics.

[89]  Brian A. Davey,et al.  EXPONENTS OF FINITE SIMPLE LATTICES , 1978 .

[90]  Ivan Rival,et al.  A note on the congruence lattice of a finitely generated algebra , 1978 .

[91]  Ivan Rival,et al.  Distributive cover-preserving sublattices of modular lattices , 1978 .

[92]  Ivan Rival,et al.  The Spectrum of a Finite Lattice: Breadth and Length Techniques , 1977, Canadian Mathematical Bulletin.

[93]  Ivan Rival,et al.  Critical edges in subdirectly irreducible lattices , 1977 .

[94]  Werner Poguntke,et al.  A THEOREM ON FINITE SUBLATTICES OF FREE LATTICES , 1977 .

[95]  Dwight Duffus,et al.  Path length in the covering graph of a lattice , 1977, Discret. Math..

[96]  Ivan Rival A note on linear extensions of irreducible elements in a finite lattice , 1976 .

[97]  Ivan Rival,et al.  Combinatorial inequalities for semimodular lattices of breadth two , 1976 .

[98]  Ivan Rival,et al.  A Fixed Point Theorem for Finite Partially Ordered Sets , 1976, J. Comb. Theory, Ser. A.

[99]  Brian A. Davey,et al.  FINITE SUBLATTICES OF THREE-GENERATED LATTICES , 1976 .

[100]  Werner Poguntke,et al.  Finite four-generated simple lattices contain all finite lattices , 1976 .

[101]  Ivan Rival,et al.  Weak embeddings and embeddings of finite distributive lattices , 1975 .

[102]  Bernhard Ganter,et al.  An arithmetical theorem for modular lattices , 1975 .

[103]  Brian A. Davey,et al.  A characterization of semi-distributivity , 1975 .

[104]  Ivan Rival Sublattices of Modular Lattices of Finite Length , 1975, Canadian Mathematical Bulletin.

[105]  David Kelly,et al.  Certain Partially Ordered Sets of Dimension Three , 1975, J. Comb. Theory, Ser. A.

[106]  Werner Poguntke,et al.  Finite sublattices generated by order-isomorphic subsets , 1974 .

[107]  Ivan Rival,et al.  A note on Whitman's property for free lattices , 1974 .

[108]  Ivan Rival,et al.  Crowns, Fences, and Dismantlable Lattices , 1974, Canadian Journal of Mathematics.

[109]  Ivan Rival Lattices with Doubly Irreducible Elements , 1974, Canadian Mathematical Bulletin.

[110]  Bernhard Ganter,et al.  Dilworth’s covering theorem for modular lattices: A simple proof , 1973 .

[111]  Ivan Rival,et al.  Maximal sublattices of finite distributive lattices , 1973 .

[112]  I. Rival,et al.  Projective images of modular (distributive, complemented) lattices are modular (distributive, complemented) , 1972 .