Distinctive compartmental organization of human primary visual cortex.

In the primary visual area of macaques and other monkeys, layer 4A is a mosaic of separate tissue compartments related to the parvocellular (P) and magnocellular (M) layers of the lateral geniculate nucleus. This mosaic resembles a honeycomb, with thin walls that receive direct P inputs and cores consisting of columns of dendrites and cell bodies ascending from layer 4B, a layer that receives indirect M inputs. To determine whether apes and humans have a macaque-like layer 4A, we examined the primary visual area in humans, chimpanzees, an orangutan, Old World monkeys, and New World monkeys. Apes and humans lacked the dense band of cytochrome oxidase staining in layer 4A that marks the stratum of P-geniculate afferents in monkeys. Furthermore, humans displayed a unique arrangement of presumed M-related cells and dendrites in layer 4A, as revealed with antibodies against nonphosphorylated neurofilaments and microtubule-associated protein 2. Human 4A contained a large amount of M-like tissue distributed in a complex, mesh-like pattern rather than in simple vertical arrays as in other anthropoid primates. Our results suggest that (i) the direct P-geniculate projection to layer 4A was reduced early in the evolution of the ape-human group, (ii) the M component of layer 4A was subsequently modified (and possibly enhanced) in the human lineage, and (iii) the honeycomb model does not adequately characterize human layer 4A. This is the first demonstration of a difference in the cortical architecture of humans and apes, the animals most closely related to humans.

[1]  L. Otvos,et al.  Identification of the major multiphosphorylation site in mammalian neurofilaments. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[2]  S. Clarke,et al.  Modular Organization of Human Extrastriate Visual Cortex: Evidence from Cytochrome Oxidase Pattern in Normal and Macular Degeneration Cases , 1994, The European journal of neuroscience.

[3]  W. Straus Imidazole increases the sensitivity of the cytochemical reaction for peroxidase with diaminobenzidine at a neutral pH. , 1982, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[4]  E. Crosby,et al.  Evolution of the Forebrain , 1966, Springer US.

[5]  D. Dacey,et al.  Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[6]  J. Kaas,et al.  Parvalbumin-like immunoreactivity of layer V pyramidal cells in the motor and somatosensory cortex of adult primates , 1996, Brain Research.

[7]  W. Newsome,et al.  Motion selectivity in macaque visual cortex. III. Psychophysics and physiology of apparent motion. , 1986, Journal of neurophysiology.

[8]  J. Morrison,et al.  Distribution of parvalbumin immunoreactivity in the visual cortex of Old World monkeys and humans , 1990, The Journal of comparative neurology.

[9]  J. Horton,et al.  Cytochrome oxidase patches: a new cytoarchitectonic feature of monkey visual cortex. , 1984, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[10]  G. Blasdel,et al.  Physiological organization of layer 4 in macaque striate cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  M. Cynader,et al.  An interdigitated columnar mosaic of cytochrome oxidase, zinc, and neurotransmitter-related molecules in cat and monkey visual cortex. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[12]  A. Dale,et al.  Functional Analysis of V3A and Related Areas in Human Visual Cortex , 1997, The Journal of Neuroscience.

[13]  R. L. Valois,et al.  Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests. , 1974, Vision research.

[14]  J. Horton,et al.  Mapping of cytochrome oxidase patches and ocular dominance columns in human visual cortex. , 1984, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[15]  Leslie G. Ungerleider,et al.  Neurofilament protein is differentially distributed in subpopulations of corticocortical projection neurons in the macaque monkey visual pathways , 1996, The Journal of comparative neurology.

[16]  S. Gould,et al.  Evolution of the brain and intelligence. , 1974, Science.

[17]  R K Carder,et al.  Neurochemical compartmentation of monkey and human visual cortex: Similarities and variations in calbindin immunoreactivity across species , 1993, Visual Neuroscience.

[18]  J. Morrison,et al.  Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: A quantitative immunohistochemical analysis , 1995, The Journal of comparative neurology.

[19]  T. Yoshioka,et al.  Compartmental organization of layer IVA in human primary visual cortex , 1995, The Journal of comparative neurology.

[20]  J. Movshon,et al.  Effects of early unilateral blur on the macaque's visual system. II. Anatomical observations , 1987 .

[21]  M. Edwards,et al.  Anatomical demonstration of ocular segregation in the retinogeniculocortical pathway of the new world capuchin monkey (Cebus apella) , 1987, The Journal of comparative neurology.

[22]  M. Wong-Riley,et al.  Cytochrome oxidase in the human visual cortex: Distribution in the developing and the adult brain , 1993, Visual Neuroscience.

[23]  J. Kaas,et al.  Ocular dominance columns in area 17 of Old World macaque and talapoin monkeys: Complete reconstructions and quantitative analyses , 1992, Visual Neuroscience.

[24]  R. L. de Valois,et al.  Psychophysical studies of monkey vision. 3. Spatial luminance contrast sensitivity tests of macaque and human observers. , 1974, Vision research.

[25]  S. Hendry,et al.  Neuronal organization and plasticity in adult monkey visual cortex: Immunoreactivity for microtubule-associated protein 2 , 1992, Visual Neuroscience.

[26]  V. Casagrande,et al.  Ocular dominance columns and retinal projections in new world spider monkeys (Ateles ater) , 1986, The Journal of comparative neurology.

[27]  D. Munoz,et al.  SMI-32 immunoreactivity in human striate cortex during postnatal development. , 1991, Brain research. Developmental brain research.

[28]  W. Merigan Temporal modulation sensitivity of macaque monkeys , 1980, Vision Research.

[29]  F. Crick,et al.  Backwardness of human neuroanatomy , 1993, Nature.

[30]  J. Morrison,et al.  Monoclonal antibody to neurofilament protein (SMI‐32) labels a subpopulation of pyramidal neurons in the human and monkey neocortex , 1989, The Journal of comparative neurology.

[31]  D. Heeger,et al.  Functional Magnetic Resonance Imaging of Early Visual Pathways in Dyslexia , 1998, The Journal of Neuroscience.

[32]  J. Allman,et al.  A neuronal morphologic type unique to humans and great apes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[33]  G. H. Jacobs,et al.  Spectral sensitivity of macaque monkeys measured with ERG flicker photometry , 1997, Visual Neuroscience.

[34]  A. Cowey,et al.  Blindsight in monkeys , 1995, Nature.

[35]  John G. Fleagle,et al.  Primate Adaptation and Evolution , 1989 .

[36]  M. Wong-Riley Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry , 1979, Brain Research.

[37]  W. B. Spatz,et al.  Distribution of cytochrome oxidase and parvalbumin in the primary visual cortex of the adult and neonate monkey, Callithrix jacchus , 1994, The Journal of comparative neurology.

[38]  M. Cynader,et al.  Differential expression of neurofilament protein in the visual system of the vervet monkey , 1996, Brain Research.

[39]  J. Rogers,et al.  Levels of the genealogical hierarchy and the problem of hominoid phylogeny. , 1994, American journal of physical anthropology.

[40]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[41]  M. Wong-Riley,et al.  Primate Visual Cortex , 1994 .

[42]  Javier DeFelipe,et al.  Colocalization of parvalbumin and calbindin D-28k in neurons including chandelier cells of the human temporal neocortex , 1997, Journal of Chemical Neuroanatomy.

[43]  R. Andersen,et al.  Encoding of three-dimensional structure-from-motion by primate area MT neurons , 1998, Nature.

[44]  J. Tigges,et al.  Ocular dominance columns in the striate cortex of chimpanzee (Pan troglodytes) , 1979, Brain Research.

[45]  L Weiskrantz,et al.  Review Lecture - Behavioural analysis of the monkey’s visual nervous system , 1972, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[46]  A. Peters,et al.  Organization of pyramidal neurons in area 17 of monkey visual cortex , 1991, The Journal of comparative neurology.

[47]  M. Livingstone,et al.  Physiological and anatomical evidence for a magnocellular defect in developmental dyslexia. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[48]  J. Lund Organization of neurons in the visual cortex, area 17, of the monkey (Macaca mulatta) , 1973, The Journal of comparative neurology.

[49]  H. J. Jerison,et al.  Evolution of the Brain and Intelligence , 1973 .

[50]  N. Logothetis,et al.  Neuronal correlates of subjective visual perception. , 1989, Science.

[51]  A. Peters,et al.  Layer IVA of rhesus monkey primary visual cortex. , 1991, Cerebral cortex.

[52]  R. Tootell,et al.  Anatomical evidence for MT and additional cortical visual areas in humans. , 1995, Cerebral cortex.