Near surface analysis of duplex PIII treated CoCr alloys

[1]  C. Díaz,et al.  Corrosion behaviour of medical CoCr alloy after nitrogen plasma immersion ion implantation , 2011 .

[2]  Andrea R. Gerson,et al.  Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn , 2010 .

[3]  Huihui Dong S-phase surface engineering of Fe-Cr, Co-Cr and Ni-Cr alloys , 2010 .

[4]  S. Mändl,et al.  Wear Mechanism, Wear Rate and Contact Pressure in PIII Nitrided CoCr Alloys , 2009 .

[5]  C. Díaz,et al.  Improved bio-tribology of biomedical alloys by ion implantation techniques , 2009 .

[6]  A. Singh,et al.  Ti based biomaterials, the ultimate choice for orthopaedic implants – A review , 2009 .

[7]  K. Rokosz,et al.  Co–Cr alloy corrosion behaviour after electropolishing and “magnetoelectropolishing” treatments , 2008 .

[8]  E. Gómez-Barrena,et al.  Special modes of corrosion under physiological and simulated physiological conditions. , 2008, Acta biomaterialia.

[9]  S. Mändl,et al.  PIII nitriding of fcc‐alloys containing Ni and Cr , 2008 .

[10]  S. Mändl,et al.  Mechanical Surface Properties of CoCr Alloys After Nitrogen PIII , 2007 .

[11]  Orhan Öztürk,et al.  Metal ion release from nitrogen ion implanted CoCrMo orthopedic implant material , 2006 .

[12]  G. Nauer,et al.  Possible reasons for the unexpected bad biocompatibility of metal-on-metal hip implants , 2006 .

[13]  M. Pham,et al.  Correlation between PIII nitriding parameters and corrosion behaviour of austenitic stainless steels , 2005 .

[14]  M. Wimmer,et al.  Subsurface microstructure of metal-on-metal hip joints and its relationship to wear particle generation. , 2005, Journal of biomedical materials research. Part B, Applied biomaterials.

[15]  Hong-Hee Kim,et al.  Reactive oxygen species mediate RANK signaling in osteoclasts. , 2004, Experimental cell research.

[16]  Takao Hanawa,et al.  Metal ion release from metal implants , 2004 .

[17]  T. Booker,et al.  High-intensity plasma ion nitriding of orthopedic materials: Part I. Tribological study , 2004 .

[18]  Stefano Mischler,et al.  Passive and transpassive behaviour of CoCrMo in simulated biological solutions , 2004 .

[19]  E. McCafferty,et al.  Oxide networks, graph theory, and the passivity of binary alloys , 2002 .

[20]  T. Hanawa,et al.  Characterization of the surface oxide film of a Co-Cr-Mo alloy after being located in quasi-biological environments using XPS , 2001 .

[21]  M. Wimmer,et al.  The acting wear mechanisms on metal-on-metal hip joint bearings: in-vitro results , 2001 .

[22]  S. Mändl,et al.  Heat balance during plasma immersion ion implantation , 2001 .

[23]  N. Athanasou,et al.  Osteoclastic differentiation by mononuclear phagocytes containing biomaterial particles , 1998, Archives of Orthopaedic and Trauma Surgery.

[24]  J. Tanaka,et al.  Chemical reaction path for thin film oxidation of stainless steel , 1997 .