Optically reconfigurable Sierpinski fractal antennas for RoF based communication systems

In this paper, the frequency reconfigurability of the Sierpinski fractal antenna is studied by using doped silicon optical switches. Selecting the optical switches as a reconfiguration tool makes the antenna more suitable for radio over fiber based communication systems since the necessary optical tools have already been settled for communication. Findings prove the multiband reconfigurability property of the proposed antenna which is an important issue for the emerging communication standards such as cognitive radio.

[1]  R.D. Murch,et al.  Reconfigurable Multiband Antenna Designs for Wireless Communication Devices , 2007, IEEE Transactions on Antennas and Propagation.

[2]  Jordi Romeu Robert,et al.  An iterative model for fractal antennas: application to the Sierpinski gasket antenna , 2000 .

[3]  A. A. Potapov,et al.  Mathematical and Physics Modelling of Fractal Antennas and Fractal Frequency Selective Surfaces and Volumes for the Fractal Radio Systems , 2007 .

[4]  Stefan Parkvall,et al.  LTE: the evolution of mobile broadband , 2009, IEEE Communications Magazine.

[5]  Elliott R. Brown,et al.  RF-MEMS switches for reconfigurable integrated circuits , 1998 .

[6]  Ayhan Yazgan,et al.  Optically reconfigurable fractal antennas for RoF systems , 2012, 2012 35th International Conference on Telecommunications and Signal Processing (TSP).

[7]  K. Sarabandi,et al.  A varactor-tuned dual-band slot antenna , 2006, IEEE Transactions on Antennas and Propagation.

[8]  Joseph Mitola,et al.  Cognitive radio: making software radios more personal , 1999, IEEE Wirel. Commun..

[9]  D. Werner,et al.  A novel design approach for small dual-band Sierpinski gasket monopole antennas , 2001, IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229).

[10]  L. Sevgi,et al.  A Tutorial on the Method of Moments [Testing Ourselves] , 2012, IEEE Antennas and Propagation Magazine.

[11]  Jordi Romeu,et al.  Fractal multiband antenna based on the Sierpinski gasket , 1996 .

[12]  Constantine A. Balanis,et al.  Antenna Theory: Analysis and Design , 1982 .

[13]  Hefdhallah Sakran,et al.  Hard and softened combination for cooperative spectrum sensing over imperfect channels in cognitive radio networks , 2013, Telecommun. Syst..

[14]  Theodore I. Kamins,et al.  Device Electronics for Integrated Circuits , 1977 .

[15]  Andreas Timm-Giel,et al.  Dimensioning of the LTE access network , 2013, Telecommun. Syst..

[16]  Ayhan Yazgan,et al.  Optimum link distance determination for a constant signal to noise ratio in M-ary PSK modulated coherent optical OFDM systems , 2014, Telecommun. Syst..

[17]  Beatriz María Vidal Synthesizing Sierpinski Antenna by Genetic Algorithm and Swarm Optimization , 2008 .

[18]  Cyril Leung,et al.  Cross-layer resource allocation for real-time services in OFDM-based cognitive radio systems , 2009, Telecommun. Syst..

[19]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[20]  J. Vardaxoglou,et al.  Frequency and beam reconfigurable antenna using photoconducting switches , 2006, IEEE Transactions on Antennas and Propagation.

[21]  L. Lee,et al.  Water soluble blue-green lasing dyes for flashlamp-pumped dye lasers , 1980, IEEE Journal of Quantum Electronics.

[22]  V.M. Masyuk,et al.  Application of the Kravchenko-Weierstrass function in the theory of fractal antennas , 2004, The Fifth International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter, and Submillimeter Waves (IEEE Cat. No.04EX828).

[23]  Vladimir Poulkov,et al.  Improving cell edge throughput for LTE using combined uplink power control , 2013, Telecommun. Syst..

[24]  Y Tawk,et al.  Optically Pumped Frequency Reconfigurable Antenna Design , 2010, IEEE Antennas and Wireless Propagation Letters.

[25]  K.C. Hwang,et al.  A Modified Sierpinski Fractal Antenna for Multiband Application , 2007, IEEE Antennas and Wireless Propagation Letters.

[26]  Robert Bestak,et al.  Handover procedure and decision strategy in LTE-based femtocell network , 2013, Telecommun. Syst..

[27]  V. F. Kravchenko,et al.  The theory of fractal antenna arrays , 2003, 4th International Conference on Antenna Theory and Techniques (Cat. No.03EX699).

[28]  Yahya Rahmat-Samii,et al.  Fractal antennas: a novel antenna miniaturization technique, and applications , 2002 .

[29]  Christos Bouras,et al.  An improved MBMS power counting mechanism towards long term evolution , 2010, Telecommun. Syst..

[30]  P. Faccin,et al.  Transmission of UMTS and WIMAX Signals Over Cost-Effective Radio Over Fiber Systems , 2009, IEEE Microwave and Wireless Components Letters.

[31]  Guo Wei,et al.  Weighted sum rate maximization for OFDM-based cognitive radio systems , 2009, Telecommun. Syst..

[32]  Jordi Romeu,et al.  On the behavior of the Sierpinski multiband fractal antenna , 1998 .

[33]  Roger F. Harrington,et al.  Field computation by moment methods , 1968 .

[34]  D. Werner,et al.  An overview of fractal antenna engineering research , 2003 .

[35]  Zhihua Wang,et al.  Reconfigurable FM-UWB transmitter design for robust short range communications , 2013, Telecommun. Syst..

[36]  Simon Haykin,et al.  Cognitive radio: brain-empowered wireless communications , 2005, IEEE Journal on Selected Areas in Communications.

[37]  M. L. Van Blaricum A brief history of photonic antenna reconfiguration , 2000 .

[38]  Mohammad Tariqul Islam,et al.  Printed circular disc compact planar antenna for UWB applications , 2013, Telecommun. Syst..

[39]  K. Sarabandi,et al.  Dual-band reconfigurable antenna with a very wide tunability range , 2006, IEEE Transactions on Antennas and Propagation.

[40]  Chi H. Lee,et al.  Optical control of millimeter-wave propagation in dielectric waveguides , 1980 .