Calibrations and Wind Observations of an Airborne Direct-Detection Wind LiDAR Supporting ESA's Aeolus Mission

Abstract: The Aeolus satellite mission of the European Space Agency (ESA) has brought the first wind lidar to space in order to satisfy the long existing need for global wind profile observations. Until the successful launch on August 22nd, 2018, pre-launch campaign activities supported the validation of the measurement principle, the instrument calibration and the optimization of retrieval algorithms. Therefore, an airborne prototype instrument has been developed, the ALADIN Airborne Demonstrator (A2D), with ALADIN being the Atmospheric Laser Doppler Instrument of Aeolus. Two airborne campaigns were conducted over Greenland, Iceland and the Atlantic Ocean in September 2009 and May 2015, employing the A2D as the first worldwide airborne direct-detection Doppler Wind Lidar (DWL) and well established coherent 2-µm wind lidar. Both wind lidar instruments were operated on the same aircraft measuring Mie backscatter from aerosols and clouds as well as Rayleigh backscatter from molecules in parallel. This paper particularly focuses on the instrument response calibration method of the A2D and its importance for accurate wind retrieval results. We provide a detailed description of the analysis of wind measurement data gathered during the two campaigns, introducing a dedicated aerial interpolation algorithm that takes into account the different resolution grids of the two lidar systems. A statistical comparison of line of sight (LOS) winds for the campaign in 2015 yielded estimations of the systematic and random (mean absolute deviation) errors of A2D observations of about 0.7 m/s and 2.1 m/s, respectively, for the Rayleigh, and 0.05 m/s and 2.3 m/s, respectively, for the Mie channel. In view of the launch of Aeolus, differences between the A2D and the satellite mission are highlighted along the way, identifying the particular assets and drawbacks.

[1]  C Flesia,et al.  Theory of the double-edge technique for Doppler lidar wind measurement. , 1998, Applied optics.

[2]  Johannes Wagner,et al.  Airborne Wind Lidar Measurements of Vertical and Horizontal Winds for the Investigation of Orographically Induced Gravity Waves , 2017 .

[3]  Bingyi Liu,et al.  Shipborne Wind Measurement and Motion-induced Error Correction of a Coherent Doppler Lidar over the Yellow Sea in 2014 , 2017 .

[4]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[5]  Haiyun Xia,et al.  Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar. , 2014, Optics express.

[6]  J. Porteneuve,et al.  A Doppler lidar for measuring winds in the middle atmosphere , 1989 .

[8]  Christian Lemmerz,et al.  Daytime measurements of atmospheric temperature profiles (2-15 km) by lidar utilizing Rayleigh-Brillouin scattering. , 2014, Optics letters.

[9]  S. Rahm,et al.  Estimation of the refractive index structure characteristic of air from coherent Doppler wind lidar data. , 2014, Optics letters.

[10]  Jian-Wei Pan,et al.  Dual-frequency Doppler lidar for wind detection with a superconducting nanowire single-photon detector. , 2017, Optics letters.

[11]  Volker Freudenthaler,et al.  The Airborne Demonstrator for the Direct-Detection Doppler Wind Lidar ALADIN on ADM-Aeolus. Part II: Simulations and Rayleigh Receiver Radiometric Performance , 2009 .

[12]  Carl S. Weimer,et al.  The Optical Autocovariance Wind Lidar. Part I: OAWL Instrument Development and Demonstration , 2018, Journal of Atmospheric and Oceanic Technology.

[13]  O. Reitebuch,et al.  The Airborne Demonstrator for the Direct-Detection Doppler Wind Lidar ALADIN on ADM-Aeolus. Part I: Instrument Design and Comparison to Satellite Instrument , 2009 .

[14]  Oliver Reitebuch,et al.  The Spaceborne Wind Lidar Mission ADM-Aeolus , 2012 .

[15]  O. Reitebuch,et al.  Saharan dust long-range transport across the Atlantic studied by an airborneDoppler wind lidar and the MACC model , 2016 .

[16]  J. Hair,et al.  Direct-detection Doppler wind measurements with a Cabannes-Mie lidar: a. Comparison between iodine vapor filter and Fabry-Perot interferometer methods. , 2007, Applied optics.

[17]  L. Isaksen,et al.  THE ATMOSPHERIC DYNAMICS MISSION FOR GLOBAL WIND FIELD MEASUREMENT , 2005 .

[18]  C. Weitkamp Lidar, Range-Resolved Optical Remote Sensing of the Atmosphere , 2005 .

[19]  Retrieval of atmospheric backscatter and extinction profiles with the aladin airborne demonstrator (A2D) , 2018 .

[20]  A. Garnier,et al.  Description of a Doppler rayleigh LIDAR for measuring winds in the middle atmosphere , 1992 .

[21]  A. Dolfi-Bouteyre,et al.  Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects , 2008 .

[22]  L. Isaksen,et al.  The assimilation of horizontal line‐of‐sight wind information into the ECMWF data assimilation and forecasting system. Part I: The assessment of wind impact , 2015 .

[23]  Ad Stoffelen,et al.  Simulation of wind profiles from a space‐borne Doppler wind lidar , 2003 .

[24]  B. Gentry,et al.  Wind measurements with 355-nm molecular Doppler lidar. , 2000, Optics letters.

[25]  Upendra N. Singh,et al.  The Doppler Aerosol Wind (DAWN) Airborne, Wind-Profiling Coherent-Detection Lidar System: Overview and Preliminary Flight Results , 2014 .

[26]  Dagmar Hartge,et al.  Report , 2019, Datenschutz und Datensicherheit - DuD.

[27]  J. Cuesta,et al.  ADM-Aeolus retrieval algorithms for aerosol and cloud products , 2008 .

[28]  Bernd Kaifler,et al.  Combined wind measurements by two different lidar instruments in the Arctic middle atmosphere , 2012 .

[29]  Stephan Rahm,et al.  Airborne wind lidar observations over the North Atlantic in 2016 for the pre-launch validation of the satellite mission Aeolus , 2018, Atmospheric Measurement Techniques.

[30]  U. Marksteiner,et al.  Airborne wind lidar observations for the validation of the ADM-Aeolus instrument , 2013 .

[31]  Christian Lemmerz,et al.  Horizontal lidar measurements for the proof of spontaneous Rayleigh-Brillouin scattering in the atmosphere. , 2012, Applied optics.

[32]  Michael Frankfurter,et al.  Numerical Recipes In C The Art Of Scientific Computing , 2016 .

[33]  Wei Liu,et al.  Narrowband sodium lidar for the measurements of mesopause region temperature and wind. , 2012, Applied optics.

[34]  Ad Stoffelen,et al.  ADM‐Aeolus Doppler wind lidar Observing System Simulation Experiment , 2006 .

[35]  Patrick Vrancken,et al.  Design of a monolithic Michelson interferometer for fringe imaging in a near-field, UV, direct-detection Doppler wind lidar. , 2016, Applied optics.

[36]  Albert Ansmann,et al.  Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations. , 2007, Applied optics.

[37]  Reinhold Busen,et al.  Targeted Observations with an Airborne Wind Lidar , 2005 .

[38]  David G. H. Tan,et al.  Simulation of the yield and accuracy of wind profile measurements from the Atmospheric Dynamics Mission (ADM‐Aeolus) , 2005 .

[39]  A. Stoffelen,et al.  The performance of Aeolus in heterogeneous atmospheric conditions using high-resolution radiosonde data , 2014 .

[40]  Lars Isaksen,et al.  Observing‐system impact assessment using a data assimilation ensemble technique: application to the ADM–Aeolus wind profiling mission , 2007 .

[41]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[42]  G. Baumgarten,et al.  Doppler Rayleigh/Mie/Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km , 2010 .

[43]  C Flesia,et al.  Double-edge molecular measurement of lidar wind profiles at 355 nm. , 2000, Optics letters.

[44]  Watts,et al.  Impact of airborne Doppler lidar observations on ECMWF forecasts , .

[45]  Oliver Reitebuch,et al.  Wind Lidar for Atmospheric Research , 2012 .

[46]  Oliver Reitebuch,et al.  Airborne direct-detection and coherent wind lidar measurements along the east coast of Greenland in 2009 supporting ESA's Aeolus mission , 2011, Remote Sensing.

[47]  G. David Emmitt,et al.  A Case Study of Observed and Modeled Barrier Flow in the Denmark Strait in May 2015 , 2017 .

[48]  Martin Wirth,et al.  Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar , 2007 .

[49]  P. Poli,et al.  The ADM-Aeolus wind retrieval algorithms , 2008 .

[50]  Haiyun Xia,et al.  Mobile Rayleigh Doppler lidar for wind and temperature measurements in the stratosphere and lower mesosphere. , 2014, Optics express.

[51]  R. M. Hardesty,et al.  The Optical Autocovariance Wind Lidar. Part II: Green OAWL (GrOAWL) Airborne Performance and Validation , 2018, Journal of Atmospheric and Oceanic Technology.

[52]  L. Isaksen,et al.  The assimilation of horizontal line‐of‐sight wind information into the ECMWF data assimilation and forecasting system. Part II: The impact of degraded wind observations , 2015 .

[53]  V. Freudenthaler,et al.  Pre-Launch Validation of ADM-Aeolus with an airborne direct-detection wind lidar. , 2008 .

[54]  Roland Meynart,et al.  ALADIN airborne demonstrator: a Doppler Wind lidar to prepare ESA's ADM-Aeolus Explorer mission , 2006, SPIE Optics + Photonics.

[55]  Z. Pu,et al.  LIDAR-MEASURED WIND PROFILES The Missing Link in the Global Observing System , 2014 .

[56]  O. Reitebuch,et al.  Frequency and timing stability of an airborne injection-seeded Nd:YAG laser system for direct-detection wind lidar. , 2017, Applied optics.

[57]  Stephan Rahm,et al.  Vertical wind retrieved by airborne lidar and analysis of island induced gravity waves in combination with numerical models and in situ particle measurements , 2016 .

[58]  Igor N. Smalikho,et al.  Characterization of Aircraft Wake Vortices by 2-μm Pulsed Doppler Lidar , 2004 .

[59]  C Flesia,et al.  Theory of the double-edge molecular technique for Doppler lidar wind measurement. , 1999, Applied optics.

[60]  Jacques Pelon,et al.  Direct-detection wind lidar operating with a multimode laser. , 2013, Applied optics.