The Fourier pseudospectral method with a restrain operator for the RLW equation

Abstract In this paper we develop a new Fourier pseudospectral method with a restrain operator which is applied to the RLW equation. The numerical results show the advantages of this method. We prove the generalized stability and the convergence of the scheme.

[1]  Jim Douglas,et al.  Superconvergence of a finite element approximation to the solution of a Sobolev equation in a single space variable , 1981 .

[2]  Error estimation of spectral method for solving three-dimensional vorticity equation , 1985 .

[3]  José Canosa,et al.  The Korteweg-de Vries-Burgers equation , 1977 .

[4]  Osamu Inoue,et al.  Fourier expansion solution of the Korteweg-de Vries equation , 1980 .

[5]  J. Pasciak Spectral Methods for a Nonlinear Initial Value Problem Involving Pseudo Differential Operators , 1982 .

[6]  M. E. Alexander,et al.  Galerkin methods applied to some model equations for non-linear dispersive waves , 1979 .

[7]  G. R. McGuire,et al.  Numerical Study of the Regularized Long-Wave Equation. II: Interaction of Solitary Waves , 1977 .

[8]  Alfio Quarteroni,et al.  Legendre and Chebyshev spectral approximations of Burgers' equation , 1981 .

[9]  Joseph Oliger,et al.  Stability of the Fourier method , 1977 .

[10]  H. Schamel,et al.  The application of the spectral method to nonlinear wave propagation , 1976 .

[11]  Bengt Fornberg,et al.  A numerical and theoretical study of certain nonlinear wave phenomena , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[12]  Ole H. Hald,et al.  Convergence of Fourier Methods for Navier-Stokes Equations , 1981 .

[13]  B. Guo,et al.  The Fourier pseudospectral method with a restrain operator for the Korteweg-de Vries equation , 1986 .

[14]  V. G. Makhankov,et al.  One more example of inelastic soliton interaction , 1976 .

[15]  D. Gottlieb,et al.  Numerical analysis of spectral methods , 1977 .

[16]  J. C. Eilbeck,et al.  Numerical study of the regularized long-wave equation I: Numerical methods , 1975 .

[17]  D. Peregrine Calculations of the development of an undular bore , 1966, Journal of Fluid Mechanics.

[18]  P. Cornille A Pseudospectral Scheme for the Numerical Calculation of Shocks , 1982 .

[19]  Alfio Quarteroni,et al.  Spectral and Pseudo-Spectral Approximations of the Navier–Stokes Equations , 1982 .