MULTISCALE MODELING OF POLYMER/CLAY NANOCOMPOSITES

Multiscale molecular modeling (M3) is applied in many fields of material science, but it is particularly important in the polymer science, due to the wide range of phenomena occurring at different scales which influence the ultimate properties of the materials. In this context, M3 plays a crucial role in the design of new materials whose properties are infiuenced by the structure at nanoscale. In this work we present the application of a multiscale molecular modeling procedure to characterize polymer/clay nanocomposites obtained with full/partial dispersion of nanofillers in a polymer. This approach relies on a step-by step message-passing technique from atomistic to mesoscale to finite element level; thus, computer simulations at all scales are completely integrated and the calculated results are compared to available experimental evidences. In details, nine polymer nanocomposite systems have been studied by different molecular modeling methods, such as atomistic Molecular Mechanics and Molecular Dynamics, the mesoscale Dissipative Particles Dynamics and the macroscale Finite Element Method. The entire computational procedure has been applied to a number of diverse polymer nanocomposite systems based on montmorillonite as clay and different clay surface modifiers, and their mechanical, thermal and barrier properties have been predicted in agreement with the available experimental data.

[1]  Maurizio Fermeglia,et al.  Computer simulation of polypropylene/organoclay nanocomposites: characterization of atomic scale structure and prediction of binding energy , 2004 .

[2]  P. D. Fleming,et al.  Structure and energy of thin films of poly-(1,4-cis-butadiene): A new atomistic approach , 1995 .

[3]  Maurizio Fermeglia,et al.  Many-scale molecular simulation for ABS-MMT nanocomposites : Upgrading of industrial scraps , 2008 .

[4]  J. Koelman,et al.  Dynamic simulations of hard-sphere suspensions under steady shear , 1993 .

[5]  U. Suter,et al.  Atomic Charges for Classical Simulations of Polar Systems , 2004 .

[6]  A. A. Gusev,et al.  Rational Design of Nanocomposites for Barrier Applications , 2001 .

[7]  M. Boyce,et al.  Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle , 2004 .

[8]  Ulrich W. Suter,et al.  Atomistic modeling of mechanical properties of polymeric glasses , 1986 .

[9]  V. Drits,et al.  The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique-texture electron diffraction , 1984, Clay Minerals.

[10]  P. Flory Principles of polymer chemistry , 1953 .

[11]  G. Choudalakis,et al.  Permeability of polymer/clay nanocomposites: A review , 2009 .

[12]  Maurizio Fermeglia,et al.  Structure and energetics of biocompatible polymer nanocomposite systems: a molecular dynamics study. , 2006, Biomacromolecules.

[13]  Donald R Paul,et al.  Effect of organoclay structure on nylon 6 nanocomposite morphology and properties , 2002 .

[14]  A. Khatibi,et al.  Comprehensive investigation on hierarchical multiscale homogenization using Representative Volume Element for piezoelectric nanocomposites , 2011 .

[15]  A. A. Gusev Micromechanical Mechanism of Reinforcement and Losses in Filled Rubbers , 2006 .

[16]  Donald R Paul,et al.  Nylon-6 Nanocomposites from Alkylammonium-Modified Clay: The Role of Alkyl Tails on Exfoliation , 2004 .

[17]  Michael L. Connolly,et al.  Computation of molecular volume , 1985 .

[18]  Bo-ming Zhang,et al.  Hierarchical multiscale modeling of failure in unidirectional fiber-reinforced plastic matrix composite , 2010 .

[19]  R. Vaia,et al.  Self-Assembly of Alkylammonium Chains on Montmorillonite: Effect of Chain Length, Head Group Structure, and Cation Exchange Capacity , 2007 .

[20]  Y. Takao,et al.  Effects of the distribution and geometry of carbon nanotubes on the macroscopic stiffness and microscopic stresses of nanocomposites , 2007 .

[21]  Pol D. Spanos,et al.  A multiscale Monte Carlo finite element method for determining mechanical properties of polymer nanocomposites , 2008 .

[22]  A. A. Gusev Representative volume element size for elastic composites: A numerical study , 1997 .

[23]  A. Yu,et al.  Multiscale modeling and simulation of polymer nanocomposites , 2008 .

[24]  H. Sun,et al.  COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds , 1998 .

[25]  H. M. Inglis,et al.  Multiscale modeling of solid propellants: From particle packing to failure , 2007 .

[26]  Tsu-Wei Chou,et al.  Multiscale modeling of compressive behavior of carbon nanotube/polymer composites , 2006 .

[27]  Maurizio Fermeglia,et al.  To the nanoscale, and beyond!: Multiscale molecular modeling of polymer-clay nanocomposites , 2007 .

[28]  Maurizio Fermeglia,et al.  Computer simulation of nylon-6/organoclay nanocomposites: prediction of the binding energy , 2003 .

[29]  Maurizio Fermeglia,et al.  Polymer-clay nanocomposites: a multiscale molecular modeling approach. , 2007, The journal of physical chemistry. B.

[30]  Krishnamurthy Jayaraman,et al.  Strategies for optimizing polypropylene-clay nanocomposite structure , 2002 .

[31]  A. Gaharwar,et al.  Development of Biomedical Polymer-Silicate Nanocomposites: A Materials Science Perspective , 2010, Materials.

[32]  P. Trovalusci,et al.  Multiscale modeling of materials by a multifield approach: Microscopic stress and strain distribution in fiber–matrix composites ☆ , 2006 .

[33]  F. T. Wall,et al.  Principles of Polymer Chemistry. Paul J. Flory.Cornell Univ. Press, Ithaca, New York, 1953. 688pp. Illus. $8.50 , 1954 .

[34]  G. Brown,et al.  The X-Ray Identification And Crystal Structures Of Clay Minerals , 1961 .

[35]  M. L. Connolly Solvent-accessible surfaces of proteins and nucleic acids. , 1983, Science.

[36]  M. L. Connolly Analytical molecular surface calculation , 1983 .

[37]  Andrei A. Gusev,et al.  Numerical Identification of the Potential of Whisker- and Platelet-Filled Polymers , 2001 .

[38]  P. B. Warren,et al.  DISSIPATIVE PARTICLE DYNAMICS : BRIDGING THE GAP BETWEEN ATOMISTIC AND MESOSCOPIC SIMULATION , 1997 .

[39]  P. Dubois,et al.  Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials , 2000 .

[40]  O. Ezekoye,et al.  Thermoplastic polyurethane elastomer nanocomposites: morphology, thermophysical, and flammability properties , 2008 .

[41]  Maurizio Fermeglia,et al.  PET/PEN blends of industrial interest as barrier materials. Part I. Many-scale molecular modeling of PET/PEN blends , 2006 .

[42]  Andrei A. Gusev,et al.  Approaching Representative Volume Element size in Interpenetrating Phase Composites , 2005 .

[43]  Maurizio Fermeglia,et al.  Multiscale Computer Simulation Studies of Water-Based Montmorillonite/Poly(ethylene oxide) Nanocomposites , 2009 .

[44]  H. Koerner,et al.  Force Field for Mica-Type Silicates and Dynamics of Octadecylammonium Chains Grafted to Montmorillonite , 2005 .

[45]  M. Osman,et al.  The Aspect Ratio and Gas Permeation in Polymer-Layered Silicate Nanocomposites , 2004 .

[46]  Maurizio Fermeglia,et al.  Estimation of the Binding Energy in Random Poly(Butylene terephtalate-co-thiodiethylene terephtalate) Copolyesters/Clay Nanocomposites via Molecular Simulation , 2004 .