Mucin Core O-Glycosylation Is Modulated by Neighboring Residue Glycosylation Status

The influence of peptide sequence and environment on the initiation and elongation of mucin O-glycosylation is not well understood. The in vivo glycosylation pattern of the porcine submaxillary gland mucin (PSM) tandem repeat containing 31 O-glycosylation sites (Gerken, T. A., Gilmore, M., and Zhang, J. (2002) J. Biol. Chem. 277, 7736–7751) reveals a weak inverse correlation with hydroxyamino acid density (and by inference the density of glycosylation) with the extent of GalNAc glycosylation and core-1 substitution. We now report the time course of the in vitro glycosylation of the apoPSM tandem repeat by recombinant UDP-GalNAc:polypeptide α-GalNAc transferases (ppGalNAc transferase) T1 and T2 that confirm these findings. A wide range of glycosylation rates are found, with several residues showing apparent plateaus in glycosylation. An adjustable kinetic model that reduces the first-order rate constants proportional to neighboring glycosylation status, plus or minus three residues of the site of glycosylation, was found to reasonably reproduce the experimental rate data for both transferases, including apparent plateaus in glycosylation. The unique, transferase-specific, positional weighting constants reveal information on the peptide/glycopeptide recognition site for each transferase. Both transferases displayed high sensitivities to neighboring Ser/Thr glycosylation, whereas ppGalNAc T2 displayed additional high sensitivities to the presence of nonglycosylated Ser/Thr residues. This is the first demonstration of the ability to model mucinO-glycosylation kinetics, confirming that under the appropriate conditions neighboring glycosylation status can be a significant factor modulating the first step of mucinO-glycan biosynthesis.

[1]  S. Cohen,et al.  Glycosyltransferase activity of Fringe modulates Notch–Delta interactions , 2000, Nature.

[2]  K. G. Hagen,et al.  A UDP-GalNAc:PolypeptideN-Acetylgalactosaminyltransferase Is Essential for Viability in Drosophila melanogaster * , 2002, The Journal of Biological Chemistry.

[3]  F. Fares,et al.  Characterization of the O-Glycosylation Sites in the Chorionic Gonadotropin β Subunit in Vivo Using Site-directed Mutagenesis and Gene Transfer , 1996, The Journal of Biological Chemistry.

[4]  J. Dennis,et al.  Glycoprotein glycosylation and cancer progression. , 1999, Biochimica et biophysica acta.

[5]  E. Bennett,et al.  Purification and cDNA Cloning of a Human UDP-N-acetyl-α- D-galactosamine:polypeptide N-Acetylgalactosaminyltransferase (*) , 1995, The Journal of Biological Chemistry.

[6]  E. Bennett,et al.  A family of UDP-GalNAc: polypeptide N-acetylgalactosaminyl-transferases control the initiation of mucin-type O-linked glycosylation. , 1996, Glycobiology.

[7]  R. Hill,et al.  The Structure and Assembly of Secreted Mucins* 210 , 1999, The Journal of Biological Chemistry.

[8]  R. Hill,et al.  Porcine submaxillary gland apomucin contains tandemly repeated, identical sequences of 81 residues. , 1988, The Journal of biological chemistry.

[9]  T. Gerken,et al.  A novel approach for chemically deglycosylating O-linked glycoproteins. The deglycosylation of submaxillary and respiratory mucins. , 1992, Biochemistry.

[10]  K. Chou,et al.  A sequence‐coupled vector‐projection model for predicting the specificity of GalNAc‐transferase , 1995, Protein science : a publication of the Protein Society.

[11]  M. Jakobsen,et al.  Expression of polypeptide GalNAc-transferases in stratified epithelia and squamous cell carcinomas: immunohistological evaluation using monoclonal antibodies to three members of the GalNAc-transferase family. , 1999, Glycobiology.

[12]  M. Hollingsworth,et al.  Cloning of a Human UDP-N-Acetyl-α-d-Galactosamine:PolypeptideN-Acetylgalactosaminyltransferase That Complements Other GalNAc-Transferases in Complete O-Glycosylation of the MUC1 Tandem Repeat* , 1998, The Journal of Biological Chemistry.

[13]  L. Tabak,et al.  Specificity of O-glycosylation by bovine colostrum UDP-GalNAc: polypeptide α-N-acetylgalactosaminyltransferase using synthetic glycopeptide substrates , 1996, Glycoconjugate Journal.

[14]  G. Briand,et al.  Influence of the amino acid sequence on the MUC5AC motif peptide O-Glycosylation by Human gastric UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase(s) , 1998, Glycoconjugate Journal.

[15]  R L Stanfield,et al.  Roles for glycosylation of cell surface receptors involved in cellular immune recognition. , 1999, Journal of molecular biology.

[16]  M. Pasumarthy,et al.  Determination of the Site-specific O-Glycosylation Pattern of the Porcine Submaxillary Mucin Tandem Repeat Glycopeptide , 1997, The Journal of Biological Chemistry.

[17]  K. Nehrke,et al.  cDNA Cloning and Expression of a Family of UDP-N-acetyl-dgalactosamine:PolypeptideN-Acetylgalactosaminyltransferase Sequence Homologs fromCaenorhabditis elegans * , 1998, The Journal of Biological Chemistry.

[18]  F. Homa,et al.  Isolation and expression of a cDNA clone encoding a bovine UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase. , 1993, The Journal of biological chemistry.

[19]  M. Hollingsworth,et al.  A novel human UDP‐N‐acetyl‐D‐galactosamine:polypeptide N‐acetylgalactosaminyltransferase, GalNAc‐T7, with specificity for partial GalNAc‐glycosylated acceptor substrates , 1999, FEBS letters.

[20]  F. Hanisch,et al.  Evidence for glycosylation-dependent activities of polypeptide N-acetylgalactosaminyltransferases rGalNAc-T2 and -T4 on mucin glycopeptides. , 2001, Glycobiology.

[21]  M. Pasumarthy,et al.  Site-specific Core 1 O-Glycosylation Pattern of the Porcine Submaxillary Gland Mucin Tandem Repeat , 1998, The Journal of Biological Chemistry.

[22]  L. Tabak,et al.  Cloning and Characterization of a Ninth Member of the UDP-GalNAc:Polypeptide N-Acetylgalactosaminyltransferase Family, ppGaNTase-T9* , 2001, The Journal of Biological Chemistry.

[23]  H. Ikenaga,et al.  Discovery of the Shortest Sequence Motif for High Level Mucin-type O-Glycosylation* , 1997, The Journal of Biological Chemistry.

[24]  M. Konishi,et al.  Brain-specific expression of a novel human UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase (GalNAc-T9). , 2000, Biochimica et biophysica acta.

[25]  R. Dwek,et al.  Concepts and principles of O-linked glycosylation. , 1998, Critical reviews in biochemistry and molecular biology.

[26]  T. Irimura,et al.  Incorporation of N‐acetylgalactosamine into consecutive threonine residues in MUC2 tandem repeat by recombinant human N‐acetyl‐D‐galactosamine transferase‐T1, T2 and T3 , 1999, FEBS letters.

[27]  M. Hollingsworth,et al.  The Lectin Domain of UDP-N-acetyl-d-galactosamine:PolypeptideN-acetylgalactosaminyltransferase-T4 Directs Its Glycopeptide Specificities* , 2000, The Journal of Biological Chemistry.

[28]  O. Lund,et al.  NetOglyc: Prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility , 1998, Glycoconjugate Journal.

[29]  I. Brockhausen Pathways of O-glycan biosynthesis in cancer cells. , 1999, Biochimica et biophysica acta.

[30]  M. Hollingsworth,et al.  Cloning and Characterization of a Close Homologue of Human UDP-N-acetyl-α-d-galactosamine:Polypeptide N-Acetylgalactosaminyltransferase-T3, Designated GalNAc-T6 , 1999, The Journal of Biological Chemistry.

[31]  S. Tsuboi,et al.  Mucin-type O-glycans and leukosialin. , 1999, Biochimica et biophysica acta.

[32]  Å. Elhammer,et al.  The acceptor specificity of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases , 1999, Glycoconjugate Journal.

[33]  D. Dearborn,et al.  Carbon-13 NMR studies of native and modified ovine submaxillary mucin. , 1984, Biochemistry.

[34]  M. Hollingsworth,et al.  Structural analysis of peptide substrates for mucin-type O-glycosylation. , 1998, Biochemistry.

[35]  L. Tabak,et al.  Charge Distribution of Flanking Amino Acids Influences O-Glycan Acquisition in Vivo(*) , 1996, The Journal of Biological Chemistry.

[36]  L. Tabak,et al.  Kinetic Analysis of a Recombinant UDP-N-acetyl-D-galactosamine:Polypeptide N-Acetylgalactosaminyltransferase (*) , 1995, The Journal of Biological Chemistry.

[37]  O. H. Lowry,et al.  Protein measurement with the Folin phenol reagent. , 1951, The Journal of biological chemistry.

[38]  L. Tabak,et al.  Charge distribution of flanking amino acids inhibits O-glycosylation of several single-site acceptors in vivo. , 1997, Glycobiology.

[39]  T. Irimura,et al.  Distinct orders of GalNAc incorporation into a peptide with consecutive threonines. , 2001, Biochemical and biophysical research communications.

[40]  K. Tachibana,et al.  Molecular cloning and characterization of a novel member of the UDP‐GalNAc:polypeptide N‐acetylgalactosaminyltransferase family, pp‐GalNAc‐T12 1 , 2002 .

[41]  R. Poorman,et al.  The specificity of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase as inferred from a database of in vivo substrates and from the in vitro glycosylation of proteins and peptides. , 1993, The Journal of biological chemistry.

[42]  S. Müller,et al.  MUC1: the polymorphic appearance of a human mucin. , 2000, Glycobiology.

[43]  Peter Roepstorff,et al.  Functional Conservation of Subfamilies of Putative UDP-N-acetylgalactosamine:Polypeptide N-Acetylgalactosaminyltransferases inDrosophila, Caenorhabditis elegans, and Mammals , 2002, The Journal of Biological Chemistry.

[44]  L. Tabak,et al.  Cloning and Expression of a Novel, Tissue Specifically Expressed Member of the UDP-GalNAc:Polypeptide N-Acetylgalactosaminyltransferase Family* , 1998, The Journal of Biological Chemistry.

[45]  T. Meitinger,et al.  Molecular cloning of a novel human UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase, GalNAc-T8, and analysis as a candidate autosomal dominant hypophosphatemic rickets (ADHR) gene. , 2000, Gene.

[46]  H. Ikenaga,et al.  Cloning and expression of a porcine UDP-GalNAc: polypeptideN-acetylgalactosaminyl transferase , 1995, Glycoconjugate Journal.

[47]  L. Tabak,et al.  Characterization of a UDP-GalNAc:Polypeptide N-Acetylgalactosaminyltransferase That Displays Glycopeptide N-Acetylgalactosaminyltransferase Activity* , 1999, The Journal of Biological Chemistry.

[48]  M. Hollingsworth,et al.  Substrate Specificities of Three Members of the Human UDP-N-Acetyl-α-d-galactosamine:Polypeptide N-Acetylgalactosaminyltransferase Family, GalNAc-T1, -T2, and -T3* , 1997, The Journal of Biological Chemistry.

[49]  J. Peter-Katalinic,et al.  Dynamic epigenetic regulation of initial O-glycosylation by UDP-N-Acetylgalactosamine:Peptide N-acetylgalactosaminyltransferases. site-specific glycosylation of MUC1 repeat peptide influences the substrate qualities at adjacent or distant Ser/Thr positions. , 1999, The Journal of biological chemistry.

[50]  R. Hill,et al.  The Complete cDNA Sequence and Structural Polymorphism of the Polypeptide Chain of Porcine Submaxillary Mucin* , 1997, The Journal of Biological Chemistry.

[51]  T. Gerken,et al.  Determination of the Site-specific Oligosaccharide Distribution of the O-Glycans Attached to the Porcine Submaxillary Mucin Tandem Repeat , 2002, The Journal of Biological Chemistry.

[52]  J. Taylor‐Papadimitriou,et al.  MUC1 and cancer. , 1999, Biochimica et biophysica acta.