Local Linearization-Runge Kutta (LLRK) Methods for Solving Ordinary Differential Equations
暂无分享,去创建一个
Juan C. Jiménez | Felix Carbonell | Rolando J. Biscay | Hugo de la Cruz | T. Ozaki | J. C. Jimenez | T. Ozaki | R. Biscay | H. D. L. Cruz | Françoise Carbonell
[1] E. Hairer,et al. Stiff and differential-algebraic problems , 1991 .
[2] John Carroll. A Matricial Exponentially Fitted Scheme for the Numerical Solution of Stiff Initial-Value Problems , 1993 .
[3] V. Araújo. Random Dynamical Systems , 2006, math/0608162.
[4] Nicholas J. Higham,et al. The Scaling and Squaring Method for the Matrix Exponential Revisited , 2005, SIAM J. Matrix Anal. Appl..
[5] G. Quispel,et al. Splitting methods , 2002, Acta Numerica.
[6] J. C. Jimenez,et al. Local Linearization method for the numerical solution of stochastic differential equations , 1996 .
[7] Cleve B. Moler,et al. Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..
[8] James M. Bower,et al. The Book of GENESIS , 1994, Springer New York.
[9] W. Beyn. On the Numerical Approximation of Phase Portraits Near Stationary Points , 1987 .
[10] Juan C. Jiménez,et al. Rate of convergence of local linearization schemes for initial-value problems , 2005, Appl. Math. Comput..
[11] Steven J. Ruuth,et al. Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .
[12] Juan C. Jiménez,et al. Dynamic properties of the local linearization method for initial-value problems , 2002, Appl. Math. Comput..
[13] K. Burrage,et al. Numerical methods for strong solutions of stochastic differential equations: an overview , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[14] Juan C. Jiménez,et al. A higher order local linearization method for solving ordinary differential equations , 2007, Appl. Math. Comput..
[15] E. Hairer,et al. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .
[16] J. Butcher. The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .
[17] Juan Carlos Jimenez,et al. A simple algebraic expression to evaluate the local linearization schemes for stochastic differential equations , 2002, Appl. Math. Lett..
[18] Juan I. Ramos,et al. Piecewise-linearized methods for initial-value problems , 1997 .
[19] Marlis Hochbruck,et al. Exponential Integrators for Large Systems of Differential Equations , 1998, SIAM J. Sci. Comput..
[20] G. Quispel,et al. Acta Numerica 2002: Splitting methods , 2002 .