In the social amoeba Dictyostelium discoideum, density, not farming status, determines predatory success on unpalatable Escherichia coli

[1]  J. Strassmann,et al.  Fruiting bodies of the social amoeba Dictyostelium discoideum increase spore transport by Drosophila , 2014, BMC Evolutionary Biology.

[2]  S. Diggle,et al.  Protist predation can favour cooperation within bacterial species , 2013, Biology Letters.

[3]  M. Icaza-Chávez,et al.  Gut microbiota in health and disease , 2013 .

[4]  J. Strassmann,et al.  Social amoeba farmers carry defensive symbionts to protect and privatize their crops , 2013, Nature Communications.

[5]  J. Strassmann,et al.  A bacterial symbiont is converted from an inedible producer of beneficial molecules into food by a single mutation in the gacA gene , 2013, Proceedings of the National Academy of Sciences.

[6]  A. Kostic,et al.  Exploring host-microbiota interactions in animal models and humans. , 2013, Genes & development.

[7]  S. West,et al.  Density-dependent fitness benefits in quorum-sensing bacterial populations , 2012, Proceedings of the National Academy of Sciences.

[8]  S. Bozzaro,et al.  Salmonella typhimurium is pathogenic for Dictyostelium cells and subverts the starvation response , 2011, Cellular microbiology.

[9]  J. Strassmann,et al.  Evolution of cooperation and control of cheating in a social microbe , 2011, Proceedings of the National Academy of Sciences.

[10]  S. Bozzaro,et al.  The Professional Phagocyte Dictyostelium discoideum as a Model Host for Bacterial Pathogens , 2011, Current drug targets.

[11]  Clara Abraham,et al.  Interactions between the host innate immune system and microbes in inflammatory bowel disease. , 2011, Gastroenterology.

[12]  J. Strassmann,et al.  Primitive agriculture in a social amoeba , 2011, Nature.

[13]  Clément Nizak,et al.  From Grazing Resistance to Pathogenesis: The Coincidental Evolution of Virulence Factors , 2010, PloS one.

[14]  K. Foster,et al.  FLO1 Is a Variable Green Beard Gene that Drives Biofilm-like Cooperation in Budding Yeast , 2008, Cell.

[15]  S. Egan,et al.  Marine Biofilm Bacteria Evade Eukaryotic Predation by Targeted Chemical Defense , 2008, PloS one.

[16]  C. Reimmann,et al.  Pseudomonas aeruginosa virulence genes identified in a Dictyostelium host model , 2008, Cellular microbiology.

[17]  P. Cosson,et al.  Dictyostelium discoideum: a model host to measure bacterial virulence , 2008, Nature Protocols.

[18]  Ludek Berec,et al.  Multiple Allee effects and population management. , 2007, Trends in ecology & evolution.

[19]  F. Taddei,et al.  Caenorhabditis elegans as a simple model to study phenotypic and genetic virulence determinants of extraintestinal pathogenic Escherichia coli. , 2007, Microbes and infection.

[20]  E. Denamur,et al.  Determination of Escherichia coli O types by allele-specific polymerase chain reaction: application to the O types involved in human septicemia. , 2007, Diagnostic microbiology and infectious disease.

[21]  E. Denamur,et al.  Experimental mouse lethality of Escherichia coli isolates, in relation to accessory traits, phylogenetic group, and ecological source. , 2006, The Journal of infectious diseases.

[22]  G. J. Velicer,et al.  Variable patterns of density-dependent survival in social bacteria , 2006 .

[23]  Ulrich Dobrindt,et al.  Role of pathogenicity island‐associated integrases in the genome plasticity of uropathogenic Escherichia coli strain 536 , 2006, Molecular microbiology.

[24]  S. Rice,et al.  The role of quorum sensing mediated developmental traits in the resistance of Serratia marcescens biofilms against protozoan grazing. , 2006, Environmental microbiology.

[25]  S. Kjelleberg,et al.  Off the hook--how bacteria survive protozoan grazing. , 2005, Trends in microbiology.

[26]  K. Heuner,et al.  Dictyostelium as host model for pathogenesis , 2005, Cellular microbiology.

[27]  S. Rice,et al.  Microcolonies, quorum sensing and cytotoxicity determine the survival of Pseudomonas aeruginosa biofilms exposed to protozoan grazing. , 2004, Environmental microbiology.

[28]  Paul Stoodley,et al.  Bacterial biofilms: from the Natural environment to infectious diseases , 2004, Nature Reviews Microbiology.

[29]  A. Casadevall,et al.  The damage-response framework of microbial pathogenesis , 2003, Nature Reviews Microbiology.

[30]  F. Blattner,et al.  Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[31]  O. Clermont,et al.  Phylogenetic Analysis and Prevalence of Urosepsis Strains of Escherichia coli Bearing Pathogenicity Island-Like Domains , 2002, Infection and Immunity.

[32]  Vanessa Sperandio,et al.  Quorum Sensing Is a Global Regulatory Mechanism in Enterohemorrhagic Escherichia coli O157:H7 , 2001, Journal of bacteriology.

[33]  R. Kessin Dictyostelium: Evolution, Cell Biology, and the Development of Multicellularity , 2001 .

[34]  N. A. Whitehead,et al.  Quorum sensing as a population-density-dependent determinant of bacterial physiology. , 2001, Advances in microbial physiology.

[35]  O. Clermont,et al.  Rapid and Simple Determination of theEscherichia coli Phylogenetic Group , 2000, Applied and Environmental Microbiology.

[36]  M. Höfle,et al.  Role of Microcolony Formation in the Protistan Grazing Defense of the Aquatic Bacterium Pseudomonas sp. MWH1 , 2000, Microbial Ecology.

[37]  Jacques Elion,et al.  The Link between Phylogeny and Virulence inEscherichia coli Extraintestinal Infection , 1999, Infection and Immunity.

[38]  M. Cohen,et al.  Cell density dependence of the aggregation characteristics of the cellular slime mould Dictyostelium discoideum. , 1975, Journal of cell science.

[39]  G. C. L. Bertram,et al.  Principles of animal ecology , 1951 .

[40]  Karl P. Schmidt,et al.  Principles of Animal Ecology , 1950 .