Multiple‐taper spectral analysis of terrestrial free oscillations: part I

We present a new method for estimating the frequencies of the Earth's free oscillations. This method is an extension of the techniques of Thomson (1982) for finding the harmonic components of a time series. Optimal tapers for reducing the spectral leakage of decaying sinusoids immersed in white noise are derived. Multiplying the data by the best K tapers creates K time series. A decaying sinusoid model is fit to the K time series by a least squares procedure. A statistical F-test is performed to test the fit of the decaying sinusoid model, and thus determine the probability that there are coherent oscillations in the data. The F-test is performed at a number of chosen frequencies, producing a measure of the certainty that there is a decaying sinusoid at each frequency. We compare this method with the conventional technique employing a discrete Fourier transform of a cosine-tapered time-series. The multiple-taper method is found to be a more sensitive detector of decaying sinusoids in a time series contaminated by white noise.

[1]  Frank L. Vernon,et al.  Multitaper spectral analysis of high-frequency seismograms , 1987 .

[2]  G. Masters,et al.  Observations of anomalous splitting and their interpretation in terms of aspherical structure , 1986 .

[3]  Freeman Gilbert,et al.  Coupled free oscillations of an aspherical, dissipative, rotating Earth: Galerkin theory , 1986 .

[4]  W. E. Farrell,et al.  Project IDA: A decade in review , 1986 .

[5]  Adam M. Dziewonski,et al.  Mapping the lower mantle: Determination of lateral heterogeneity in P velocity up to degree and order 6 , 1984 .

[6]  D. Slepian Some comments on Fourier analysis, uncertainty and modeling , 1983 .

[7]  G. Masters,et al.  Attenuation in the earth at low frequencies , 1983, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[8]  G. Golub Matrix computations , 1983 .

[9]  E. Engdahl,et al.  Global Digital Networks—Current status and future directions , 1982 .

[10]  D. Thomson,et al.  Spectrum estimation and harmonic analysis , 1982, Proceedings of the IEEE.

[11]  F. Dahlen The effect of data windows on the estimation of free oscillation parameters , 1982 .

[12]  Thomas H. Wonnacott,et al.  Regression: A Second Course in Statistics. , 1981 .

[13]  Guy Masters,et al.  Structure of the inner core inferred from observations of its spheroidal shear modes , 1981 .

[14]  Freeman Gilbert,et al.  Autoregressive estimation of complex eigenfrequencies in low frequency seismic spectra , 1980 .

[15]  F. Gilbert,et al.  Stacking for the frequencies and Qs of 0S0 and 1S0 , 1980 .

[16]  R. Sailor,et al.  Rotational and elliptical splitting of the free oscillations of the Earth , 1979 .

[17]  R. Buland,et al.  Observations from the IDA network of attenuation and splitting during a recent earthquake , 1979, Nature.

[18]  Duncan Carr Agnew,et al.  Vertical seismic noise at very low frequencies , 1978 .

[19]  D. Slepian Prolate spheroidal wave functions, fourier analysis, and uncertainty — V: the discrete case , 1978, The Bell System Technical Journal.

[20]  F. Gilbert,et al.  Improved resolution of complex eigenfrequencies in analytically continued seismic spectra , 1978 .

[21]  E. O. Brigham,et al.  The Fast Fourier Transform , 1967, IEEE Transactions on Systems, Man, and Cybernetics.

[22]  F. Harris On the use of windows for harmonic analysis with the discrete Fourier transform , 1978, Proceedings of the IEEE.

[23]  P. Bickel,et al.  Mathematical Statistics: Basic Ideas and Selected Topics , 1977 .

[24]  Duncan Carr Agnew,et al.  International deployment of accelerometers: A network for very long period seismology , 1976 .

[25]  B. S. Garbow,et al.  Matrix Eigensystem Routines — EISPACK Guide , 1974, Lecture Notes in Computer Science.

[26]  F. Gilbert,et al.  An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra , 1975, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[27]  Hiroo Kanamori,et al.  Focal process of the great Chilean earthquake May 22, 1960☆ , 1974 .

[28]  Donald R. Smith Variational methods in optimization , 1974 .

[29]  Kenneth S. Miller,et al.  Complex stochastic processes: an introduction to theory and application , 1974 .

[30]  G. Backus,et al.  Inference from Inadequate and Inaccurate Data, III. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Alan R. Jones,et al.  Fast Fourier Transform , 1970, SIGP.

[32]  G. Backus,et al.  The Resolving Power of Gross Earth Data , 1968 .

[33]  R. Gnanadesikan,et al.  Probability plotting methods for the analysis for the analysis of data , 1968 .

[34]  R. Gnanadesikan,et al.  Probability plotting methods for the analysis of data. , 1968, Biometrika.

[35]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[36]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[37]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[38]  David M. Miller,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[39]  D. Slepian Prolate spheroidal wave functions, Fourier analysis and uncertainty — IV: Extensions to many dimensions; generalized prolate spheroidal functions , 1964 .

[40]  Richard H. Jones Spectral estimates and their distributions. Part II , 1962 .

[41]  G. Backus,et al.  THE ROTATIONAL SPLITTING OF THE FREE OSCILLATIONS OF THE EARTH. , 1961, Proceedings of the National Academy of Sciences of the United States of America.

[42]  D. Slepian,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .

[43]  H. Goldstein,et al.  Classical Mechanics , 1951, Mathematical Gazette.

[44]  M. H. Quenouille Approximate Tests of Correlation in Time‐Series , 1949 .

[45]  Maurice G. Kendall,et al.  The advanced theory of statistics , 1945 .