Droplet size and nozzle tip pressure from a pulse-width modulation sprayer

[1]  R. S. Henry,et al.  Influence of Herbicide Active Ingredient, Nozzle Type, Orifice Size, Spray Pressure, and Carrier Volume Rate on Spray Droplet Size Characteristics , 2015, Weed Technology.

[2]  Pulsed sprays from oversized orifices for increased momentum and kinetic energy in depositing agricultural sprays , 2001 .

[3]  F. Hall,et al.  Effects of spray adjuvants on swath patterns and droplet spectra for a flat-fan hydraulic nozzle , 1993 .

[4]  John P. Fulton,et al.  Real-time nozzle flow uniformity when using automatic section control on agricultural sprayers , 2011 .

[5]  Santosh K. Pitla,et al.  A CASE STUDY CONCERNING THE EFFECTS OF CONTROLLER RESPONSE AND TURNING MOVEMENTS ON APPLICATION RATE UNIFORMITY WITH A SELF―PROPELLED SPRAYER , 2011 .

[6]  Joe D. Luck,et al.  Field application uniformity and accuracy of two rate control systems with automatic section capabilities on agricultural sprayers , 2013, Precision Agriculture.

[7]  D. Giles,et al.  Pulse Width Modulated Sprays for Flow Rate and Droplet Size Control: Spray Dynamics and Field Performance , 2003 .

[8]  Santosh K. Pitla,et al.  Potential for pesticide and nutrient savings via map-based automatic boom section control of spray nozzles , 2010 .

[9]  L. F. Bouse,et al.  EFFECT OF SPRAY MIXTURE ON DROPLET SIZE , 1990 .

[10]  A. Womac,et al.  Characterization of the Spray Droplet Spectra and Patterns of Four Venturi-Type Drift Reduction Nozzles , 1999, Weed Technology.

[11]  W. C. Hoffmann,et al.  Droplet Velocity from Broadcast Agricultural Nozzles as Influenced by Pulse-Width Modulation , 2018 .

[12]  G. Kruger,et al.  Effect of Nozzle Selection and Spray Volume on Droplet Size and Efficacy of Engenia Tank-Mix Combinations , 2016, Weed Technology.

[13]  Nicolas De Cock,et al.  Investigation on optimal spray properties for ground based agricultural applications using deposition and retention models , 2017 .

[14]  J. P. Cunha,et al.  Assessment of spray drift from pesticide applications in soybean crops. , 2017 .

[15]  Durham K. Giles,et al.  Variable Flow Control for Pressure Atomization Nozzles , 1989 .

[16]  D. Giles,et al.  Digital Control of Flow Rate and Spray Droplet Size from Agricultural Nozzles for Precision Chemical Application , 2015 .

[17]  Alvin R. Womac,et al.  Spray Tip Configurations with Pulse-Width Modulation for Glufosinate-Ammonium Deposits in Palmer Amaranth (Amaranthus palmeri) , 2017 .

[18]  W. C. Hoffmann,et al.  COMPARISON OF DROP SIZE DATA FROM GROUND AND AERIAL APPLICATION NOZZLES AT THREE TESTING LABORATORIES , 2014 .

[19]  H. Erdal Ozkan Sprayer Performance Evaluation with Microcomputers , 1987 .

[20]  Alvin R. Womac,et al.  Spray Tip Effect on Glufosinate Canopy Deposits in Palmer Amaranth ( Amaranthus palmeri ) for Pulse-Width Modulation versus Air-Induction Technologies , 2016 .

[21]  E. A. Anglund,et al.  FIELD EVALUATION OF RESPONSE TIMES FOR A VARIABLE RATE (PRESSURE–BASED AND INJECTION) LIQUID CHEMICAL APPLICATORS , 2003 .

[22]  D. K. Giles,et al.  Droplet size and spray pattern characteristics of an electronic flow controller for spray nozzles , 1990 .

[23]  Daniel E. Martin,et al.  Air and Spray Mixture Temperature Effects on Atomization of Agricultural Sprays , 2011 .

[24]  Joe D. Luck,et al.  Analyzing the Nozzle Spray Fan Pattern of an Agricultural Sprayer Using Pulse Width Modulation Technology to Generate an On-Ground Coverage Map , 2017 .

[25]  R. Klein,et al.  Glyphosate Spray Drift Management with Drift-Reducing Nozzles and Adjuvants1 , 2006, Weed Technology.

[26]  W. E. Bagley,et al.  Measuring the Effect of Spray Plume Angle on the Accuracy of Droplet Size Data , 2014 .

[27]  Andrew J. Hewitt DROPLET SIZE AND AGRICULTURAL SPRAYING, PART I: ATOMIZATION, SPRAY TRANSPORT, DEPOSITION, DRIFT, AND DROPLET SIZE MEASUREMENT TECHNIQUES , 1997 .

[28]  T. C. Mueller,et al.  Effect of Venturi-Type Nozzles and Application Volume on Postemergence Herbicide Efficacy1 , 2001, Weed Technology.

[29]  M. Knoche Effect of droplet size and carrier volume on performance of foliage-applied herbicides , 1994 .

[30]  D. Nuyttens,et al.  Droplet Size and Velocity Characteristics of Agricultural Sprays , 2009 .

[31]  Durham K. Giles,et al.  Spray droplet velocity and energy in intermittent flow from hydraulic nozzles , 1992 .

[32]  M. B. Ellis,et al.  Effects of formulation on spray nozzle performance for applications from ground-based boom sprayers , 2000 .

[33]  Graham Matthews,et al.  Pesticide application methods , 1979 .

[34]  W. Stroup Generalized Linear Mixed Models: Modern Concepts, Methods and Applications , 2012 .

[35]  David Nuyttens,et al.  Effect of nozzle type, size and pressure on spray droplet characteristics , 2007 .

[36]  C. R. Tuck,et al.  The effect of some adjuvants on sprays produced by agricultural flat fan nozzles , 1997 .

[37]  Pch Miller,et al.  Factors Influencing the Performance of Spray Delivery Systems: A Review of Recent Developments , 2005 .

[38]  Mandy D. Bish,et al.  Survey of Missouri Pesticide Applicator Practices, Knowledge, and Perceptions , 2017, Weed Technology.

[39]  P. D. Ayers,et al.  An Investigation of Factors Affecting Sprayer Control System Performance , 1990 .

[40]  Timothy A. Ebert,et al.  Deposit structure and efficacy of pesticide application. 1: Interactions between deposit size, toxicant concentration and deposit number , 1999 .

[41]  L. F. Bouse Effect of Nozzle Type and Operation on Spray Droplet Size , 1994 .

[42]  Joe D. Luck,et al.  Reducing pesticide over-application with map-based automatic boom section control on agricultural sprayers. , 2010 .

[43]  Robert D. Grisso,et al.  The Cost of Misapplication of Herbicides , 1989 .

[44]  G. A. Matthews,et al.  Effect of different fan nozzles and spray liquids on droplet spectra with special reference to drift control , 1992 .

[45]  M. C. Butler Ellis,et al.  PM—Power and Machinery: Design Factors affecting Spray Characteristics and Drift Performance of Air Induction Nozzles , 2002 .