An entropic quantum drift-diffusion model for electron transport in resonant tunneling diodes
暂无分享,去创建一个
[1] G. Iafrate,et al. Quantum correction to the equation of state of an electron gas in a semiconductor. , 1989, Physical review. B, Condensed matter.
[2] F. Nier. A variational formulation of schrödinger-poisson systems in dimension d ≤ 3 , 1993 .
[3] L. Esaki,et al. Resonant tunneling in semiconductor double barriers , 1974 .
[4] Naoufel Ben Abdallah,et al. A Hybrid Kinetic-Quantum Model for Stationary Electron Transport , 1998 .
[5] Andrea L. Lacaita,et al. Quantum-corrected drift-diffusion models for transport in semiconductor devices , 2005 .
[6] C. Schmeiser,et al. Semiconductor equations , 1990 .
[7] Ansgar Jüngel,et al. Semiconductor Simulations Using a Coupled Quantum Drift-Diffusion Schr[o-umlaut]dinger-Poisson Model , 2005, SIAM J. Appl. Math..
[8] Ansgar Jüngel,et al. Quasi-hydrodynamic Semiconductor Equations , 2001 .
[9] Stefan Teufel,et al. Adiabatic perturbation theory in quantum dynamics , 2003 .
[10] Florian Méhats,et al. Numerical approximation of a quantum drift-diffusion model , 2004 .
[11] Pierre Degond,et al. Binary quantum collision operators conserving mass momentum and energy , 2003 .
[12] Olivier Pinaud,et al. Transient simulations of a resonant tunneling diode , 2002 .
[13] Ingenuin Gasser,et al. Closure conditions for classical and quantum moment hierarchies in the small-temperature limit , 1996 .
[14] P. Markowich,et al. Quantum hydrodynamics, Wigner transforms, the classical limit , 1997 .
[15] A. Unterreiter,et al. On the stationary quantum drift-diffusion model , 1998 .
[16] P. Degond,et al. On a one-dimensional Schrödinger-Poisson scattering model , 1997 .
[17] F. Nier. A Stationary Schrödinger-Poisson System Arising from the Modelling of Electronic Devices , 1990 .
[18] Pierre Degond,et al. Quantum Energy-Transport and Drift-Diffusion Models , 2005 .
[19] ASMA EL AYYADI. SEMICONDUCTOR SIMULATIONS USING A COUPLED QUANTUM DRIFT-DIFFUSION SCHRÖDINGER-POISSON MODEL , 2004 .
[20] Craig S. Lent,et al. The quantum transmitting boundary method , 1990 .
[21] M. Ancona,et al. Macroscopic physics of the silicon inversion layer. , 1987, Physical review. B, Condensed matter.
[22] N. Abdallah,et al. QUANTUM PHYSICS; PARTICLES AND FIELDS 4241 On a multidimensional Schrodinger-Poisson scattering model for semiconductors , 2000 .
[23] Ferry,et al. Self-consistent study of the resonant-tunneling diode. , 1989, Physical review. B, Condensed matter.
[24] Pierre Degond,et al. Quantum Hydrodynamic and Diffusion Models Derived from the Entropy Principle , 2008 .
[25] Pierre Degond,et al. A 1D coupled Schrödinger drift-diffusion model including collisions , 2005 .
[26] C. D. Levermore,et al. Moment closure hierarchies for kinetic theories , 1996 .
[27] The two-dimensional Wigner-Poisson problem for an electron gas in the charge neutral case , 1991 .
[28] Gardner,et al. Smooth quantum potential for the hydrodynamic model. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[29] Pierre Degond,et al. Quantum Moment Hydrodynamics and the Entropy Principle , 2003 .
[30] Carl L. Gardner,et al. The Quantum Hydrodynamic Model for Semiconductor Devices , 1994, SIAM J. Appl. Math..
[31] Pierre Degond,et al. A coupled Schrödinger drift-diffusion model for quantum semiconductor device simulations , 2002 .
[32] Florian Méhats,et al. Entropic Discretization of a Quantum Drift-Diffusion Model , 2005, SIAM J. Numer. Anal..
[33] Stefano Micheletti,et al. Numerical Simulation of Resonant Tunneling Diodes with a Quantum-Drift-Diffusion Model , 2004 .
[34] Christian A. Ringhofer,et al. The Chapman-Enskog Expansion and the Quantum Hydrodynamic Model for Semiconductor Devices , 2000, VLSI Design.
[35] Eric Polizzi,et al. Self-consistent three-dimensional models for quantum ballistic transport in open systems , 2002 .
[36] Pierre Degond,et al. Quantum Hydrodynamic models derived from the entropy principle , 2003 .
[37] Ansgar Jüngel,et al. The quantum hydrodynamic model for semiconductors in thermal equilibrium , 1997 .
[38] Ansgar Jüngel,et al. A Positivity-Preserving Numerical Scheme for a Nonlinear Fourth Order Parabolic System , 2001, SIAM J. Numer. Anal..
[39] Andreas Unterreiter,et al. The Stationary Current { VoltageCharacteristics of the Quantum DriftDi usion ModelRen , 1999 .
[40] A. Pirovano,et al. Two-dimensional quantum effects in nanoscale MOSFETs , 2002 .
[41] Ren-Chuen Chen,et al. A quantum corrected energy-transport model for nanoscale semiconductor devices , 2005 .
[42] Didier Lippens,et al. Effect of cathode spacer layer on the current‐voltage characteristics of resonant tunneling diodes , 1990 .