An entropic quantum drift-diffusion model for electron transport in resonant tunneling diodes

We present an entropic quantum drift-diffusion model (eQDD) and show how it can be derived on a bounded domain as the diffusive approximation of the Quantum Liouville equation with a quantum BGK operator. Some links between this model and other existing models are exhibited, especially with the density gradient (DG) model and the Schrodinger-Poisson drift-diffusion model (SPDD). Then a finite difference scheme is proposed to discretize the eQDD model coupled to the Poisson equation and we show how this scheme can be slightly modified to discretize the other models. Numerical results show that the properties listed for the eQDD model are checked, as well as the model captures important features concerning the modeling of a resonant tunneling diode. To finish, some comparisons between the models stated above are realized.

[1]  G. Iafrate,et al.  Quantum correction to the equation of state of an electron gas in a semiconductor. , 1989, Physical review. B, Condensed matter.

[2]  F. Nier A variational formulation of schrödinger-poisson systems in dimension d ≤ 3 , 1993 .

[3]  L. Esaki,et al.  Resonant tunneling in semiconductor double barriers , 1974 .

[4]  Naoufel Ben Abdallah,et al.  A Hybrid Kinetic-Quantum Model for Stationary Electron Transport , 1998 .

[5]  Andrea L. Lacaita,et al.  Quantum-corrected drift-diffusion models for transport in semiconductor devices , 2005 .

[6]  C. Schmeiser,et al.  Semiconductor equations , 1990 .

[7]  Ansgar Jüngel,et al.  Semiconductor Simulations Using a Coupled Quantum Drift-Diffusion Schr[o-umlaut]dinger-Poisson Model , 2005, SIAM J. Appl. Math..

[8]  Ansgar Jüngel,et al.  Quasi-hydrodynamic Semiconductor Equations , 2001 .

[9]  Stefan Teufel,et al.  Adiabatic perturbation theory in quantum dynamics , 2003 .

[10]  Florian Méhats,et al.  Numerical approximation of a quantum drift-diffusion model , 2004 .

[11]  Pierre Degond,et al.  Binary quantum collision operators conserving mass momentum and energy , 2003 .

[12]  Olivier Pinaud,et al.  Transient simulations of a resonant tunneling diode , 2002 .

[13]  Ingenuin Gasser,et al.  Closure conditions for classical and quantum moment hierarchies in the small-temperature limit , 1996 .

[14]  P. Markowich,et al.  Quantum hydrodynamics, Wigner transforms, the classical limit , 1997 .

[15]  A. Unterreiter,et al.  On the stationary quantum drift-diffusion model , 1998 .

[16]  P. Degond,et al.  On a one-dimensional Schrödinger-Poisson scattering model , 1997 .

[17]  F. Nier A Stationary Schrödinger-Poisson System Arising from the Modelling of Electronic Devices , 1990 .

[18]  Pierre Degond,et al.  Quantum Energy-Transport and Drift-Diffusion Models , 2005 .

[19]  ASMA EL AYYADI SEMICONDUCTOR SIMULATIONS USING A COUPLED QUANTUM DRIFT-DIFFUSION SCHRÖDINGER-POISSON MODEL , 2004 .

[20]  Craig S. Lent,et al.  The quantum transmitting boundary method , 1990 .

[21]  M. Ancona,et al.  Macroscopic physics of the silicon inversion layer. , 1987, Physical review. B, Condensed matter.

[22]  N. Abdallah,et al.  QUANTUM PHYSICS; PARTICLES AND FIELDS 4241 On a multidimensional Schrodinger-Poisson scattering model for semiconductors , 2000 .

[23]  Ferry,et al.  Self-consistent study of the resonant-tunneling diode. , 1989, Physical review. B, Condensed matter.

[24]  Pierre Degond,et al.  Quantum Hydrodynamic and Diffusion Models Derived from the Entropy Principle , 2008 .

[25]  Pierre Degond,et al.  A 1D coupled Schrödinger drift-diffusion model including collisions , 2005 .

[26]  C. D. Levermore,et al.  Moment closure hierarchies for kinetic theories , 1996 .

[27]  The two-dimensional Wigner-Poisson problem for an electron gas in the charge neutral case , 1991 .

[28]  Gardner,et al.  Smooth quantum potential for the hydrodynamic model. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[29]  Pierre Degond,et al.  Quantum Moment Hydrodynamics and the Entropy Principle , 2003 .

[30]  Carl L. Gardner,et al.  The Quantum Hydrodynamic Model for Semiconductor Devices , 1994, SIAM J. Appl. Math..

[31]  Pierre Degond,et al.  A coupled Schrödinger drift-diffusion model for quantum semiconductor device simulations , 2002 .

[32]  Florian Méhats,et al.  Entropic Discretization of a Quantum Drift-Diffusion Model , 2005, SIAM J. Numer. Anal..

[33]  Stefano Micheletti,et al.  Numerical Simulation of Resonant Tunneling Diodes with a Quantum-Drift-Diffusion Model , 2004 .

[34]  Christian A. Ringhofer,et al.  The Chapman-Enskog Expansion and the Quantum Hydrodynamic Model for Semiconductor Devices , 2000, VLSI Design.

[35]  Eric Polizzi,et al.  Self-consistent three-dimensional models for quantum ballistic transport in open systems , 2002 .

[36]  Pierre Degond,et al.  Quantum Hydrodynamic models derived from the entropy principle , 2003 .

[37]  Ansgar Jüngel,et al.  The quantum hydrodynamic model for semiconductors in thermal equilibrium , 1997 .

[38]  Ansgar Jüngel,et al.  A Positivity-Preserving Numerical Scheme for a Nonlinear Fourth Order Parabolic System , 2001, SIAM J. Numer. Anal..

[39]  Andreas Unterreiter,et al.  The Stationary Current { VoltageCharacteristics of the Quantum DriftDi usion ModelRen , 1999 .

[40]  A. Pirovano,et al.  Two-dimensional quantum effects in nanoscale MOSFETs , 2002 .

[41]  Ren-Chuen Chen,et al.  A quantum corrected energy-transport model for nanoscale semiconductor devices , 2005 .

[42]  Didier Lippens,et al.  Effect of cathode spacer layer on the current‐voltage characteristics of resonant tunneling diodes , 1990 .