Natural disturbance regimes for implementation of ecological forestry: a review and case study from Nova Scotia, Canada

Ecological forestry is based on the idea that forest patterns and processes are more likely to persist if harvest strategies produce stand structures, return intervals, and severities similar to those from natural disturbances. Taylor et al. (2020) reviewed forest natural disturbance regimes in Nova Scotia, Canada, to support implementation of ecological forestry. In this follow-up paper, we 1) review use of natural disturbance regimes to determine target harvest rotations, age structures, and residual stand structures; and 2) describe a novel approach for use of natural disturbance regimes in ecological forestry developed for Nova Scotia. Most examples of ecological forestry consider only the local, dominant disturbance agent, such as fire in boreal regions. Our approach included: 1) using current ecological land classification to map potential natural vegetation (PNV) community types; 2) determining cumulative natural disturbance effects of all major disturbances, in our case fire, hurricanes, windstorm, and insect outbreaks for each PNV; and 3) using natural disturbance regime parameters to derive guidelines for ecological forestry for each PNV. We analyzed disturbance occurrence and return intervals based on low, moderate, and high severity classes (<30, 30-60, and >60% of biomass of living trees killed), which were used to determine mean annual disturbance rates by severity class. Return intervals were used to infer target stand age-class distributions for high, moderate, and low severity disturbances for each PNV. The range of variation in rates of high severity disturbances among PNVs was from 0.28% yr-1 in Tolerant Hardwood to 2.1% yr-1 in the Highland Fir PNV, equating to return intervals of 357 years in Tolerant Hardwood to 48 yrs in Highland Fir PNVs. As an example, this return interval for the Tolerant Hardwood PNV resulted in target rotation lengths of 200 years for 35% of the PNV area, 500 years for 40%, and 1000 years for 25%. The proposed approach of determining natural disturbance regimes for PNV communities and calculating target disturbance rates and corresponding harvest rotation lengths or entry times appears to be a feasible method to guide ecological forestry in any region with a strong ecological land classification system and multiple disturbance agents.