Error Analysis of a Compact ADI Scheme for the 2D Fractional Subdiffusion Equation

In this paper, a Crank–Nicolson-type compact ADI scheme is proposed for solving two-dimensional fractional subdiffusion equation. The unique solvability, unconditional stability and convergence of the scheme are proved rigorously. Two error estimates are presented. One is $$\mathcal{O }(\tau ^{\min \{2-\frac{\gamma }{2},\,2\gamma \}}+h_1^4+h^4_2)$$O(τmin{2-γ2,2γ}+h14+h24) in standard $$H^1$$H1 norm, where $$\tau $$τ is the temporal grid size and $$h_1,h_2$$h1,h2 are spatial grid sizes; the other is $$\mathcal{O }(\tau ^{2\gamma }+h_1^4+h^4_2)$$O(τ2γ+h14+h24) in $$H^1_{\gamma }$$Hγ1 norm, a generalized norm which is associated with the Riemann–Liouville fractional integral operator. Numerical results are presented to support the theoretical analysis.

[1]  Bruce J. West,et al.  Fractional Diffusion Equation , 1999 .

[2]  Xuan Zhao,et al.  Compact Alternating Direction Implicit Scheme for the Two-Dimensional Fractional Diffusion-Wave Equation , 2012, SIAM J. Numer. Anal..

[3]  J. Bouchaud,et al.  Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .

[4]  Jichun Li,et al.  Finite Difference Methods for Elliptic Equations , 2008 .

[5]  G. T. McAllister Difference methods for a nonlinear elliptic system of partial differential equations , 1966 .

[6]  Ya-Nan Zhang,et al.  Error Estimates of Crank-Nicolson-Type Difference Schemes for the Subdiffusion Equation , 2011, SIAM J. Numer. Anal..

[7]  Solomon,et al.  Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow. , 1993, Physical review letters.

[8]  Xuan Zhao,et al.  A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions , 2011, J. Comput. Phys..

[9]  Mingrong Cui,et al.  Compact alternating direction implicit method for two-dimensional time fractional diffusion equation , 2012, J. Comput. Phys..

[10]  I. Podlubny Fractional differential equations , 1998 .

[11]  Zhi-Zhong Sun,et al.  A compact finite difference scheme for the fractional sub-diffusion equations , 2011, J. Comput. Phys..

[12]  R. Gorenflo,et al.  Time Fractional Diffusion: A Discrete Random Walk Approach , 2002 .

[13]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .

[14]  F. Mainardi The fundamental solutions for the fractional diffusion-wave equation , 1996 .

[15]  Weihua Deng,et al.  Numerical algorithm for the time fractional Fokker-Planck equation , 2007, J. Comput. Phys..

[16]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[17]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[18]  Fawang Liu,et al.  New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation , 2008, SIAM J. Numer. Anal..

[19]  Fawang Liu,et al.  A Fourier method for the fractional diffusion equation describing sub-diffusion , 2007, J. Comput. Phys..

[20]  Xianjuan Li,et al.  Finite difference/spectral approximations for the fractional cable equation , 2010, Math. Comput..

[21]  Santos B. Yuste,et al.  An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..

[22]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[23]  Hermann Brunner,et al.  Numerical simulations of 2D fractional subdiffusion problems , 2010, J. Comput. Phys..

[24]  W. Wyss The fractional diffusion equation , 1986 .

[25]  Fawang Liu,et al.  Numerical Schemes with High Spatial Accuracy for a Variable-Order Anomalous Subdiffusion Equation , 2010, SIAM J. Sci. Comput..

[26]  Zhi-Zhong Sun,et al.  Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation , 2011, J. Comput. Phys..

[27]  B. Henry,et al.  The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .