Error Analysis of a Compact ADI Scheme for the 2D Fractional Subdiffusion Equation
暂无分享,去创建一个
[1] Bruce J. West,et al. Fractional Diffusion Equation , 1999 .
[2] Xuan Zhao,et al. Compact Alternating Direction Implicit Scheme for the Two-Dimensional Fractional Diffusion-Wave Equation , 2012, SIAM J. Numer. Anal..
[3] J. Bouchaud,et al. Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .
[4] Jichun Li,et al. Finite Difference Methods for Elliptic Equations , 2008 .
[5] G. T. McAllister. Difference methods for a nonlinear elliptic system of partial differential equations , 1966 .
[6] Ya-Nan Zhang,et al. Error Estimates of Crank-Nicolson-Type Difference Schemes for the Subdiffusion Equation , 2011, SIAM J. Numer. Anal..
[7] Solomon,et al. Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow. , 1993, Physical review letters.
[8] Xuan Zhao,et al. A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions , 2011, J. Comput. Phys..
[9] Mingrong Cui,et al. Compact alternating direction implicit method for two-dimensional time fractional diffusion equation , 2012, J. Comput. Phys..
[10] I. Podlubny. Fractional differential equations , 1998 .
[11] Zhi-Zhong Sun,et al. A compact finite difference scheme for the fractional sub-diffusion equations , 2011, J. Comput. Phys..
[12] R. Gorenflo,et al. Time Fractional Diffusion: A Discrete Random Walk Approach , 2002 .
[13] Zhi‐zhong Sun,et al. A fully discrete difference scheme for a diffusion-wave system , 2006 .
[14] F. Mainardi. The fundamental solutions for the fractional diffusion-wave equation , 1996 .
[15] Weihua Deng,et al. Numerical algorithm for the time fractional Fokker-Planck equation , 2007, J. Comput. Phys..
[16] J. Klafter,et al. The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .
[17] K. B. Oldham,et al. The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .
[18] Fawang Liu,et al. New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation , 2008, SIAM J. Numer. Anal..
[19] Fawang Liu,et al. A Fourier method for the fractional diffusion equation describing sub-diffusion , 2007, J. Comput. Phys..
[20] Xianjuan Li,et al. Finite difference/spectral approximations for the fractional cable equation , 2010, Math. Comput..
[21] Santos B. Yuste,et al. An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..
[22] Chuanju Xu,et al. Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..
[23] Hermann Brunner,et al. Numerical simulations of 2D fractional subdiffusion problems , 2010, J. Comput. Phys..
[24] W. Wyss. The fractional diffusion equation , 1986 .
[25] Fawang Liu,et al. Numerical Schemes with High Spatial Accuracy for a Variable-Order Anomalous Subdiffusion Equation , 2010, SIAM J. Sci. Comput..
[26] Zhi-Zhong Sun,et al. Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation , 2011, J. Comput. Phys..
[27] B. Henry,et al. The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .