A logical characterization of data languages

The ideal case of formal languages. In the formal languages framework, the class of regular languages can be characterized in various ways: finite automata, rational expressions, monadic second-order logic, extended temporal logics, finite monoids... (see e.g. [RS97]). Among all these equivalences, the logical characterization is of particular interest since many subclasses of regular languages (like star-free languages or locally threshold testable languages) can be exactly described through fragments of the whole logics, like first-order logics or linear temporal logics [Pin94,PP01]. All these characterizations constitute not only one of the cornerstones of theoretical computer science but also form the fundamental basis for much more practical research on verification (see e.g. [CGP99,BBF+01]).

[1]  Wieslaw Zielonka,et al.  Controlled Timed Automata , 1998, CONCUR.

[2]  Wang Yi,et al.  Uppaal in a nutshell , 1997, International Journal on Software Tools for Technology Transfer.

[3]  Philippe Schnoebelen,et al.  Systems and Software Verification, Model-Checking Techniques and Tools , 2001 .

[4]  Patricia Bouyer,et al.  Decomposition and Composition of Timed Automata , 1999, ICALP.

[5]  Thomas A. Henzinger,et al.  A Determinizable Class of Timed Automata , 1994, CAV.

[6]  Patricia Bouyer,et al.  An Algebraic Characterization of Data and Timed Languages , 2001, CONCUR.

[7]  Thomas Wilke,et al.  Specifying Timed State Sequences in Powerful Decidable Logics and Timed Automata , 1994, FTRTFT.

[8]  Paul Caspi,et al.  Timed regular expressions , 2002, JACM.

[9]  Edmund M. Clarke,et al.  Model Checking , 1999, Handbook of Automated Reasoning.

[10]  Pierre-Yves Schobbens,et al.  The Regular Real-Time Languages , 1998, ICALP.

[11]  Grzegorz Rozenberg,et al.  Handbook of Formal Languages , 1997, Springer Berlin Heidelberg.

[12]  Rajeev Alur,et al.  Model-Checking in Dense Real-time , 1993, Inf. Comput..

[13]  Jean-Éric Pin,et al.  Logic on Words , 2001, Bull. EATCS.

[14]  Patricia Bouyer,et al.  A Kleene/Büchi-like Theorem for Clock Languages , 2001, J. Autom. Lang. Comb..

[15]  Thomas A. Henzinger,et al.  Event-Clock Automata: A Determinizable Class of Timed Automata , 1999, Theor. Comput. Sci..

[16]  Sergio Yovine,et al.  Model Checking Timed Automata , 1996, European Educational Forum: School on Embedded Systems.

[17]  Paul Caspi,et al.  A Kleene theorem for timed automata , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[18]  S. Sieber On a decision method in restricted second-order arithmetic , 1960 .