Effect of perfluorosulfonic acid ionomer in anode catalyst layer on proton exchange membrane water electrolyzer performance

[1]  F. Calle‐Vallejo,et al.  Active and durable R2MnRuO7 pyrochlores with low Ru content for acidic oxygen evolution , 2023, Nature Communications.

[2]  Junliang Zhang,et al.  The effect of catalyst layer design on catalyst utilization in PEMFC studied via stochastic reconstruction method , 2023, Energy and AI.

[3]  Sunghak Park,et al.  Water electrolysis , 2022, Nature Reviews Methods Primers.

[4]  Haotian Wang,et al.  Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis , 2022, Nature Materials.

[5]  Haoming Ma,et al.  A systemic review of hydrogen supply chain in energy transition , 2023, Frontiers in Energy.

[6]  N. Danilovic,et al.  Rotating Disk Electrode Standardization and Best Practices in Acidic Oxygen Evolution for Low-Temperature Electrolysis , 2022, Frontiers in Energy Research.

[7]  Wei Zhu,et al.  Improving the water electrolysis performance by manipulating the generated nano/micro-bubbles using surfactants , 2022, Nano Research.

[8]  Jin-Soo Park,et al.  Effect of ionomer dispersions on the performance of catalyst layers in proton exchange membrane fuel cells , 2022, Electrochimica Acta.

[9]  Sang Moon Kim,et al.  Investigation of the correlation effects of catalyst loading and ionomer content in an anode electrode on the performance of polymer electrode membrane water electrolysis , 2022, International Journal of Hydrogen Energy.

[10]  H. Gasteiger,et al.  Capabilities and limitations of rotating disk electrodes versus membrane electrode assemblies in the investigation of electrocatalysts , 2022, Nature Catalysis.

[11]  Junliang Zhang,et al.  A Functionally Stable RuMn Electrocatalyst for Oxygen Evolution Reaction in Acid , 2022, Advanced Functional Materials.

[12]  T. Araki,et al.  Existence of Dissolved Oxygen near Anode Catalyst in Proton Exchange Membrane Water Electrolyzers , 2022, Journal of The Electrochemical Society.

[13]  S. Bagherifard,et al.  Extending conventional surface roughness ISO parameters using topological data analysis for shot peened surfaces , 2022, Scientific reports.

[14]  S. Garg,et al.  The role of electrode wettability in electrochemical reduction of carbon dioxide , 2021, Journal of Materials Chemistry A.

[15]  K. Friedrich,et al.  Porous Transport Layers for Proton Exchange Membrane Electrolysis Under Extreme Conditions of Current Density, Temperature, and Pressure , 2021, Advanced Energy Materials.

[16]  Haijiang Wang,et al.  Bridging the gap between highly active oxygen reduction reaction catalysts and effective catalyst layers for proton exchange membrane fuel cells , 2021, Nature Energy.

[17]  D. Brett,et al.  Optimisation of Mass Transport Parameters in a Polymer Electrolyte Membrane Electrolyser Using Factorial Design-of-Experiment , 2021, Frontiers in Energy Research.

[18]  Betar M. Gallant,et al.  Bubble growth and departure modes on wettable/non-wettable porous foams in alkaline water splitting , 2021, Joule.

[19]  W. Gu,et al.  Editors’ Choice—Ionomer Side Chain Length and Equivalent Weight Impact on High Current Density Transport Resistances in PEMFC Cathodes , 2021 .

[20]  Xianguo Li,et al.  Degradations in the surface wettability and gas permeability characteristics of proton exchange membrane fuel cell electrodes under freeze-thaw cycles: Effects of ionomer type , 2020 .

[21]  M. Secanell,et al.  Measurement of the Protonic and Electronic Conductivities of PEM Water Electrolyzer Electrodes. , 2020, ACS applied materials & interfaces.

[22]  Y. Jung,et al.  Highly efficient oxygen evolution reaction via facile bubble transport realized by three-dimensionally stack-printed catalysts , 2020, Nature Communications.

[23]  Junliang Zhang,et al.  Effect of cobalt ion contamination on proton conduction of ultrathin Nafion film , 2020 .

[24]  James L. Young,et al.  Effects of various parameters of different porous transport layers in proton exchange membrane water electrolysis , 2020 .

[25]  Taro Kimura,et al.  Towards a generic understanding of oxygen evolution reaction kinetics in polymer electrolyte water electrolysis , 2020, Energy & Environmental Science.

[26]  S. Shimpalee,et al.  Effects of the Transport/Catalyst Layer Interface and Catalyst Loading on Mass and Charge Transport Phenomena in Polymer Electrolyte Membrane Water Electrolysis Devices , 2020 .

[27]  H. Gardeniers,et al.  Influence of Bubbles on the Energy Conversion Efficiency of Electrochemical Reactors , 2020, Joule.

[28]  Scott A. Mauger,et al.  Investigation of the Microstructure and Rheology of Iridium Oxide Catalyst Inks for Low-Temperature Polymer Electrolyte Membrane Water Electrolyzers. , 2019, ACS applied materials & interfaces.

[29]  T. Fuller,et al.  Effect of Carbon Corrosion on Wettability of PEM Fuel Cell Electrodes , 2019, Journal of The Electrochemical Society.

[30]  Darren J. Martin,et al.  Electrochemical Characteristics of Cobaltosic Oxide in Organic Electrolyte According to Bode Plots: Double‐Layer Capacitance and Pseudocapacitance , 2019, ChemElectroChem.

[31]  Long Luo,et al.  Gas Bubbles in Electrochemical Gas Evolution Reactions. , 2019, Langmuir : the ACS journal of surfaces and colloids.

[32]  D. Lohse,et al.  Gas bubble evolution on microstructured silicon substrates , 2018, 1901.07326.

[33]  G. Schneider,et al.  Contact angle measurement of free-standing square-millimeter single-layer graphene , 2018, Nature Communications.

[34]  R. Hanke-Rauschenbach,et al.  Three-dimensional microstructure analysis of a polymer electrolyte membrane water electrolyzer anode , 2018, Journal of Power Sources.

[35]  Lei Jiang,et al.  Superwetting Electrodes for Gas-Involving Electrocatalysis. , 2018, Accounts of chemical research.

[36]  Youngchul Park,et al.  Effects of Both Oxygen Permeability and Ion Exchange Capacity for Cathode Ionomers on the Performance and Durability of Polymer Electrolyte Fuel Cells , 2018 .

[37]  Peipei Zhang,et al.  Superwettability of Gas Bubbles and Its Application: From Bioinspiration to Advanced Materials , 2017, Advanced materials.

[38]  A. Weber,et al.  New Insights into Perfluorinated Sulfonic-Acid Ionomers. , 2017, Chemical reviews.

[39]  Thomas J. Dursch,et al.  Nanostructure/Swelling Relationships of Bulk and Thin‐Film PFSA Ionomers , 2016 .

[40]  Hubert A. Gasteiger,et al.  Influence of Ionomer Content in IrO 2 /TiO 2 Electrodes on PEM Water Electrolyser Performance , 2016 .

[41]  N. Guillet,et al.  Influence of iridium oxide loadings on the performance of PEM water electrolysis cells: Part I–Pure IrO2-based anodes , 2016 .

[42]  Youngchul Park,et al.  Effects of short-side-chain perfluorosulfonic acid ionomers as binders on the performance of low Pt loading fuel cell cathodes , 2015 .

[43]  Hongyan Ma,et al.  Mercury intrusion porosimetry in concrete technology: tips in measurement, pore structure parameter acquisition and application , 2014, Journal of Porous Materials.

[44]  D. Stolten,et al.  A comprehensive review on PEM water electrolysis , 2013 .

[45]  M. Dupuis,et al.  Insight from molecular modelling: does the polymer side chain length matter for transport properties of perfluorosulfonic acid membranes? , 2012, Physical chemistry chemical physics : PCCP.

[46]  K. Scott,et al.  The effects of ionomer content on PEM water electrolyser membrane electrode assembly performance , 2010 .

[47]  J. Jorné,et al.  Proton Conduction in PEM Fuel Cell Cathodes: Effects of Electrode Thickness and Ionomer Equivalent Weight , 2010 .

[48]  Y. Bultel,et al.  Impedance study of the oxygen reduction reaction on platinum nanoparticles in alkaline media , 2003 .

[49]  A. Züttel,et al.  Hydrogen-storage materials for mobile applications , 2001, Nature.

[50]  Yann Bultel,et al.  Oxygen reduction reaction kinetics and mechanism on platinum nanoparticles inside Nafion , 2001 .

[51]  Junliang Zhang,et al.  Bubble Management in Pem Water Electrolysis Via Imprinting Patterned Grooves on Catalyst Layer , 2023, SSRN Electronic Journal.

[52]  Junliang Zhang,et al.  Bubble evolution and transport in PEM water electrolysis: Mechanism, impact, and management , 2023, Progress in Energy and Combustion Science.

[53]  Haihui Xin,et al.  Pore structure evolution during lean-oxygen combustion of pyrolyzed residual from low-rank coal and its effect on internal oxygen diffusion mechanism , 2022, Fuel.

[54]  Xiaofei Yang,et al.  Nickel-Based Metal-Organic Framework-Derived Bifunctional Electrocatalysts for Hydrogen and Oxygen Evolution Reactions , 2020, Acta Physico Chimica Sinica.

[55]  Bin Xu,et al.  Research Progress of Nickel-Based Metal-Organic Frameworks and Their Derivatives for Oxygen Evolution Catalysis , 2020 .

[56]  Junliang Zhang,et al.  Influence of Equivalent Weight of Ionomer on Proton Conduction Behavior in Fuel Cell Catalyst Layers , 2019, Journal of The Electrochemical Society.

[57]  R. Hanke-Rauschenbach,et al.  Local Current Density and Electrochemical Impedance Measurements within 50 cm Single-Channel PEM Electrolysis Cell , 2018 .

[58]  Changpeng Liu,et al.  Recent Progress of Non-Noble Metal Catalysts in Water Electrolysis for Hydrogen Production , 2016 .

[59]  A. Chakraborty,et al.  Electrochemical Impedance Spectroscopy of Oxygen Reduction Reaction (ORR) in a Rotating Disk Electrode Configuration: Effect of Ionomer Content and Carbon-Support , 2015 .