Determination of finite automata accepting subregular languages

We investigate the descriptional complexity of the nondeterministic finite automaton (NFA) to the deterministic finite automaton (DFA) conversion problem, for automata accepting subregular languages such as combinational languages, definite languages and variants thereof, (strictly) locally testable languages, star-free languages, ordered languages, prefix-, suffix-, and infix-closed languages, and prefix-, suffix-, and infix-free languages. Most of the bounds for the conversion problem are shown to be tight in the exact number of states, that is, the number is sufficient and necessary in the worst case. Otherwise tight bounds in order of magnitude are shown.

[1]  Janusz A. Brzozowski Roots of Star Events , 1967, JACM.

[2]  FRANK R. MOORE,et al.  On the Bounds for State-Set Size in the Proofs of Equivalence Between Deterministic, Nondeterministic, and Two-Way Finite Automata , 1971, IEEE Transactions on Computers.

[3]  Grzegorz Rozenberg,et al.  Handbook of Formal Languages , 1997, Springer Berlin Heidelberg.

[4]  Lawrence T. Kou,et al.  Multiple-Entry Finite Automata , 1974, J. Comput. Syst. Sci..

[5]  Ivan M. Havel,et al.  The theory of regular events. II , 1969, Kybernetika.

[6]  Micha A. Perles,et al.  The Theory of Definite Automata , 1963, IEEE Trans. Electron. Comput..

[7]  Marek Chrobak,et al.  Errata to: "finite automata and unary languages" , 2003 .

[8]  Sheng Yu,et al.  NFA to DFA Transformation for Finite Languages over Arbitrary Alphabets , 1998, J. Autom. Lang. Comb..

[9]  J. Brzozowski Canonical regular expressions and minimal state graphs for definite events , 1962 .

[10]  Marcel Paul Schützenberger,et al.  On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..

[11]  A. R. Meyer,et al.  Economy of Description by Automata, Grammars, and Formal Systems , 1971, SWAT.

[12]  Janusz A. Brzozowski,et al.  On Decompositions of Regular Events , 1967, JACM.

[13]  Marek Chrobak,et al.  Finite Automata and Unary Languages , 1986, Theor. Comput. Sci..

[14]  Janusz A. Brzozowski,et al.  Characterizations of locally testable events , 1971, Discret. Math..

[15]  Huei-Jan Shyr,et al.  Power-separating regular languages , 2005, Mathematical systems theory.

[16]  Abraham Ginzburg,et al.  About Some Properties of Definite, Reverse-Definite and Related Automata , 1966, IEEE Trans. Electron. Comput..

[17]  Bezalel Peleg,et al.  Ultimate-Definite and Symmetric-Definite Events and Automata , 1965, JACM.

[18]  Yechezkel Zalcstein,et al.  Locally Testable Languages , 1972, J. Comput. Syst. Sci..

[19]  Dana S. Scott,et al.  Finite Automata and Their Decision Problems , 1959, IBM J. Res. Dev..