Symbiodinium (Dinophyceae) diversity in reef‐invertebrates along an offshore to inshore reef gradient near Lizard Island, Great Barrier Reef

Despite extensive work on the genetic diversity of reef invertebrate‐dinoflagellate symbioses on the Great Barrier Reef (GBR; Australia), large information gaps exist from northern and inshore regions. Therefore, a broad survey was done comparing the community of inshore, mid‐shelf and outer reefs at the latitude of Lizard Island. Symbiodinium (Freudenthal) diversity was characterized using denaturing gradient gel electrophoresis fingerprinting and sequencing of the ITS2 region of the ribosomal DNA. Thirty‐nine distinct Symbiodinium types were identified from four subgeneric clades (B, C, D, and G). Several Symbiodinium types originally characterized from the Indian Ocean were discovered as well as eight novel types (C1kk, C1LL, C3nn, C26b, C161a, C162, C165, C166). Multivariate analyses on the Symbiodinium species diversity data showed a strong link with host identity, consistent with previous findings. Of the four environmental variables tested, mean austral winter sea surface temperature (SST) influenced Symbiodinium distribution across shelves most significantly. A similar result was found when the analysis was performed on Symbiodinium diversity data of genera with an open symbiont transmission mode separately with chl a and PAR explaining additional variation. This study underscores the importance of SST and water quality related variables as factors driving Symbiodinium distribution on cross‐shelf scales. Furthermore, this study expands our knowledge on Symbiodinium species diversity, ecological partitioning (including host‐specificity) and geographic ranges across the GBR. The accelerating rate of environmental change experienced by coral reef ecosystems emphasizes the need to comprehend the full complexity of cnidarian symbioses, including the biotic and abiotic factors that shape their current distributions.

[1]  C. Simmons,et al.  Worldwide biogeography of Symbiodinium in tropical octocorals , 2008 .

[2]  B. Willis,et al.  Responses of coral‐associated bacterial communities to heat stress differ with Symbiodinium type on the same coral host , 2010, Molecular ecology.

[3]  E. Sampayo,et al.  Cohesive molecular genetic data delineate species diversity in the dinoflagellate genus Symbiodinium , 2009, Molecular ecology.

[4]  D. Powers,et al.  A Molecular Genetic Classification of Zooxanthellae and the Evolution of Animal-Algal Symbioses , 1991, Science.

[5]  Agaricia tenuifolia,et al.  Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs , 2002 .

[6]  S. Davy,et al.  Spatial patterns and regional affinities of coral communities at the Kermadec Islands Marine Reserve, New Zealand — a marginal high-latitude site , 2010 .

[7]  J. Cortés Corals of the world , 2001 .

[8]  K. Ulstrup,et al.  Geographic and habitat partitioning of genetically distinct zooxanthellae (Symbiodinium) in Acropora corals on the Great Barrier Reef , 2003, Molecular ecology.

[9]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[10]  Scarla J. Weeks,et al.  Environmental Factors Controlling the Distribution of Symbiodinium Harboured by the Coral Acropora millepora on the Great Barrier Reef , 2011, PloS one.

[11]  S. Sunagawa,et al.  Coral host transcriptomic states are correlated with Symbiodinium genotypes , 2010, Molecular ecology.

[12]  P. Bongaerts,et al.  Genetic Divergence across Habitats in the Widespread Coral Seriatopora hystrix and Its Associated Symbiodinium , 2010, PloS one.

[13]  R. Berkelmans,et al.  Potential Costs of Acclimatization to a Warmer Climate: Growth of a Reef Coral with Heat Tolerant vs. Sensitive Symbiont Types , 2010, PloS one.

[14]  P. Bongaerts,et al.  Adaptive divergence in a scleractinian coral: physiological adaptation of Seriatopora hystrix to shallow and deep reef habitats , 2011, BMC Evolutionary Biology.

[15]  Chaolun Allen Chen,et al.  Symbiont diversity in scleractinian corals from tropical reefs and subtropical non-reef communities in Taiwan , 2005, Coral Reefs.

[16]  X. Pochon,et al.  One-year survey of a single Micronesian reef reveals extraordinarily rich diversity of Symbiodinium types in soritid foraminifera , 2007, Coral Reefs.

[17]  O. Hoegh‐Guldberg,et al.  Genetic variability of the symbiotic dinoflagellates from the wide ranging coral species Seriatopora hystrix and Acropora longicyathus in the Indo-West Pacific , 2001 .

[18]  O. Hoegh‐Guldberg,et al.  Symbiont acquisition strategy drives host–symbiont associations in the southern Great Barrier Reef , 2008, Coral Reefs.

[19]  F. Palstra,et al.  Patterns of coral–dinoflagellate associations in Acropora: significance of local availability and physiology of Symbiodinium strains and host–symbiont selectivity , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[20]  Todd C. LaJeunesse,et al.  Long‐standing environmental conditions, geographic isolation and host–symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium , 2010 .

[21]  Gene C. Feldman,et al.  Satellite-Derived Photic Depth on the Great Barrier Reef: Spatio-Temporal Patterns of Water Clarity , 2012, Remote. Sens..

[22]  N. Knowlton,et al.  Intraspecific diversity and ecological zonation in coral-algal symbiosis. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[23]  T. Lajeunesse,et al.  Host–symbiont recombination versus natural selection in the response of coral–dinoflagellate symbioses to environmental disturbance , 2010, Proceedings of the Royal Society B: Biological Sciences.

[24]  P. Bongaerts,et al.  Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type , 2008, Proceedings of the National Academy of Sciences.

[25]  O. Hoegh‐Guldberg,et al.  Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients , 2004 .

[26]  G. Schmidt,et al.  High diversity and host specificity observed among symbiotic dinoflagellates in reef coral communities from Hawaii , 2004, Coral Reefs.

[27]  T. Lajeunesse "Species" radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. , 2005, Molecular biology and evolution.

[28]  Chaolun Allen Chen,et al.  Host genetics and Symbiodinium D diversity in a stress-tolerant scleractinian coral, Oulastrea crispata, in the West Pacific , 2013 .

[29]  C. A. Sanchez,et al.  Diversity of algal endosymbionts (zooxanthellae) in octocorals: the roles of geography and host relationships , 2005, Molecular ecology.

[30]  R. Berkelmans,et al.  A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization , 2008, Proceedings of the Royal Society B: Biological Sciences.

[31]  O. Hoegh‐Guldberg,et al.  Stability of coral–endosymbiont associations during and after a thermal stress event in the southern Great Barrier Reef , 2009, Coral Reefs.

[32]  K. Bjorndal,et al.  Global Trajectories of the Long-Term Decline of Coral Reef Ecosystems , 2003, Science.

[33]  X. Pochon,et al.  Biogeographic partitioning and host specialization among foraminiferan dinoflagellate symbionts (Symbiodinium; Dinophyta) , 2004 .

[34]  T. Hughes,et al.  Correlated evolution of sex and reproductive mode in corals (Anthozoa: Scleractinia) , 2011, Proceedings of the Royal Society B: Biological Sciences.

[35]  P. Ralph,et al.  Variation in bleaching sensitivity of two coral species across a latitudinal gradient on the Great Barrier Reef: the role of zooxanthellae , 2006 .

[36]  Y. Yamashita,et al.  Symbiodinium Clade C Dominates Zooxanthellate Corals (Scleractinia) in the Temperate Region of Japan , 2012, Zoological science.

[37]  R. Grosberg,et al.  Climate Change, Human Impacts, and the Resilience of Coral Reefs , 2003, Science.

[38]  A. Emery,et al.  Genetic variability , 1980, Nature.

[39]  B. Degnan,et al.  An ancient and variable mannose-binding lectin from the coral Acropora millepora binds both pathogens and symbionts. , 2008, Developmental and comparative immunology.

[40]  B. Willis,et al.  High genetic differentiation and cross-shelf patterns of genetic diversity among Great Barrier Reef populations of Symbiodinium , 2009, Coral Reefs.

[41]  Todd C. LaJeunesse,et al.  Outbreak and persistence of opportunistic symbiotic dinoflagellates during the 2005 Caribbean mass coral ‘bleaching’ event , 2009, Proceedings of the Royal Society B: Biological Sciences.

[42]  T. Lajeunesse INVESTIGATING THE BIODIVERSITY, ECOLOGY, AND PHYLOGENY OF ENDOSYMBIOTIC DINOFLAGELLATES IN THE GENUS SYMBIODINIUM USING THE ITS REGION: IN SEARCH OF A “SPECIES” LEVEL MARKER , 2001 .

[43]  John Bunt,et al.  The Australian Institute of Marine Science , 1982 .

[44]  Scarla J. Weeks,et al.  Host-Specific Interactions with Environmental Factors Shape the Distribution of Symbiodinium across the Great Barrier Reef , 2013, PloS one.

[45]  Ray Berkelmans,et al.  The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change , 2006, Proceedings of the Royal Society B: Biological Sciences.

[46]  S. R. Santos,et al.  Measuring rDNA diversity in eukaryotic microbial systems: how intragenomic variation, pseudogenes, and PCR artifacts confound biodiversity estimates , 2007, Molecular ecology.

[47]  P. Bongaerts,et al.  SymbioGBR: a web-based database of Symbiodinium associated with cnidarian hosts on the Great Barrier Reef , 2013, BMC Ecology.

[48]  Daniel J. Wilson,et al.  The influence of mutation, recombination, population history, and selection on patterns of genetic diversity in Neisseria meningitidis. , 2005, Molecular biology and evolution.

[49]  G. Schmidt,et al.  Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion , 2006 .

[50]  A. Correa,et al.  Novel algal symbiont (Symbiodinium spp.) diversity in reef corals of Western Australia , 2011 .

[51]  O. Hoegh‐Guldberg Climate change, coral bleaching and the future of the world's coral reefs , 1999 .

[52]  D. Thornhill,et al.  HOST‐SPECIALIST LINEAGES DOMINATE THE ADAPTIVE RADIATION OF REEF CORAL ENDOSYMBIONTS , 2014, Evolution; international journal of organic evolution.

[53]  O. Hoegh‐Guldberg,et al.  Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean , 2003 .

[54]  Tadashi Maruyama,et al.  Non‐seasonal clade‐specificity and subclade microvariation in symbiotic dinoflagellates (Symbiodinium spp.) in Zoanthus sansibaricus (Anthozoa: Hexacorallia) at Kagoshima Bay, Japan , 2007 .

[55]  T. Lajeunesse,et al.  The ecological distribution and comparative photobiology of symbiotic dinoflagellates from reef corals in Belize: Potential implications for coral bleaching , 2006 .

[56]  T. Ridgway,et al.  Latitudinal symbiont zonation in Stylophora pistillata from southeast Africa , 2008 .

[57]  E. Sampayo,et al.  Niche partitioning of closely related symbiotic dinoflagellates , 2007, Molecular ecology.

[58]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[59]  A. Douglas,et al.  Molecular diversity of symbiotic algae (zooxanthellae) in scleractinian corals of Kenya , 2006, Coral Reefs.

[60]  T. Done,et al.  Geographic distribution of zooxanthella types in three coral species on the Great Barrier Reef sampled after the 2002 bleaching event , 2005, Coral Reefs.

[61]  D. Thornhill,et al.  Improved Resolution of Reef-Coral Endosymbiont (Symbiodinium) Species Diversity, Ecology, and Evolution through psbA Non-Coding Region Genotyping , 2011, PloS one.

[62]  T. Oliver,et al.  Distributions of stress-resistant coral symbionts match environmental patterns at local but not regional scales , 2009 .

[63]  D. Miller,et al.  Correction for van Oppen et al., Patterns of coral–dinoflagellate associations in Acropora: significance of local availability and physiology of Symbiodinium strains and host–symbiont selectivity , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[64]  W. Stam,et al.  Real-time PCR reveals a high incidence of Symbiodinium clade D at low levels in four scleractinian corals across the Great Barrier Reef: implications for symbiont shuffling , 2007, Coral Reefs.

[65]  P. Ralph,et al.  Seasonal variation in the photo-physiology of homogeneous and heterogeneous Symbiodinium consortia in two scleractinian corals , 2008 .

[66]  P. Frade,et al.  Variation in symbiont distribution between closely related coral species over large depth ranges , 2007, Molecular ecology.

[67]  E. Sampayo,et al.  The Relative Significance of Host–Habitat, Depth, and Geography on the Ecology, Endemism, and Speciation of Coral Endosymbionts in the Genus Symbiodinium , 2010, Microbial Ecology.

[68]  P. Boag,et al.  Preservation of avian blood and tissue samples for DNA analyses , 1991 .

[69]  Xavier Pochon,et al.  A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai'i. , 2010, Molecular phylogenetics and evolution.

[70]  G. Schmidt,et al.  Specificity and stability in high latitude eastern Pacific coral‐algal symbioses , 2008 .

[71]  M. Oppen Mode of zooxanthella transmission does not affect zooxanthella diversity in acroporid corals , 2004 .

[72]  O. Hoegh‐Guldberg,et al.  Host pigments: potential facilitators of photosynthesis in coral symbioses. , 2008, Plant, cell & environment.

[73]  K. Fabricius,et al.  Identity and diversity of coral endosymbionts (zooxanthellae) from three Palauan reefs with contrasting bleaching, temperature and shading histories , 2004, Molecular ecology.