Fields of an ultrashort tightly focused laser pulse

Analytic expressions for the electromagnetic fields of an ultrashort, tightly focused, linearly polarized laser pulse in vacuum are derived from scalar and vector potentials using a small parameter, which assumes a small bandwidth of the laser pulse. The derived fields are compared with those of the Lax series expansion and the complex-source-point approaches and are shown to be well-behaved and accurate even in the subcycle pulse regime. We further demonstrate that terms stemming from the scalar potential and due to a fast varying pulse envelope are non-negligible and may significantly influence laser-matter interactions.

[1]  Wei Hu,et al.  Propagation of pulsed beam beyond the paraxial approximation in free space , 2003 .

[2]  Zhigang Chen,et al.  Accurate description of ultra-short tightly focused Gaussian laser pulses and vacuum laser acceleration , 2005 .

[3]  Alexandre April Nonparaxial elegant Laguerre-Gaussian beams. , 2008, Optics letters.

[4]  Michel Piché,et al.  Electron acceleration driven by ultrashort and nonparaxial radially polarized laser pulses. , 2012, Optics letters.

[5]  Y. Salamin Fields of a radially polarized Gaussian laser beam beyond the paraxial approximation. , 2006, Optics Letters.

[6]  Wieslaw Krolikowski,et al.  Revealing local field structure of focused ultrashort pulses. , 2011, Physical review letters.

[7]  Michel Piché,et al.  4π Focusing of TM(01) beams under nonparaxial conditions. , 2010, Optics express.

[8]  I. Ludlow,et al.  Scalar field of nonparaxial Gaussian beams. , 2000, Optics letters.

[9]  Christoph H Keitel,et al.  Direct high-power laser acceleration of ions for medical applications. , 2008, Physical review letters.

[10]  L. W. Davis,et al.  Theory of electromagnetic beams , 1979 .

[11]  Alexandre April,et al.  Nonparaxial TM and TE beams in free space. , 2008, Optics letters.

[12]  G. A. Deschamps,et al.  Gaussian beam as a bundle of complex rays , 1971 .

[13]  Ultrashort focused electromagnetic pulses. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Y. Salamin Fields of a focused linearly polarized Gaussian beam: truncated series versus the complex-source-point spherical-wave representation. , 2009, Optics letters.

[15]  William B. McKnight,et al.  From Maxwell to paraxial wave optics , 1975 .

[16]  Postle,et al.  Longitudinal field components for laser beams in vacuum. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[17]  Qiang Lin,et al.  Subcycle pulsed focused vector beams. , 2006, Physical review letters.

[18]  Zach DeVito,et al.  Opt , 2017 .

[19]  Colin J. R. Sheppard,et al.  Beam modes beyond the paraxial approximation: A scalar treatment , 1998 .

[20]  Luping Shi,et al.  Creation of a needle of longitudinally polarized light in vacuum using binary optics , 2008 .

[21]  C. Keitel,et al.  Photon–photon scattering in collisions of intense laser pulses , 2012, 1202.3339.

[22]  J. P. Barton,et al.  Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam , 1989 .

[23]  A. Baltuska,et al.  Parametric amplification of few-cycle carrier-envelope phase-stable pulses at 2.1 microm. , 2006, Optics letters.

[24]  K. Eikema,et al.  Ultrafast Optical Parametric Chirped-Pulse Amplification , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[25]  Ferenc Krausz,et al.  Development of a Joule‐class Yb:YAG amplifier and its implementation in a CPA system generating 1 TW pulses , 2014 .

[26]  Gerd Leuchs,et al.  Dipole pulse theory: Maximizing the field amplitude from 4 pi focused laser pulses , 2012 .

[27]  Miguel A. Porras,et al.  ULTRASHORT PULSED GAUSSIAN LIGHT BEAMS , 1998 .

[28]  Eric Esarey,et al.  Nonparaxial propagation of ultrashort laser pulses in plasma channels , 1999 .

[29]  S. Sepke,et al.  Exact analytical solution for the vector electromagnetic field of Gaussian, flattened Gaussian, and annular Gaussian laser modes. , 2006, Optics letters.

[30]  N. B. Narozhny,et al.  Scattering of relativistic electrons by a focused laser pulse , 2000 .

[31]  Eric Esarey,et al.  Theory and group velocity of ultrashort, tightly focused laser pulses , 1995 .

[32]  Stelios Tzortzakis,et al.  Spatiotemporal airy light bullets in the linear and nonlinear regimes. , 2010, Physical review letters.

[33]  Charles Varin,et al.  Analytical calculation of the longitudinal electric field resulting from the tight focusing of an ultrafast transverse-magnetic laser beam. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[34]  C. Keitel,et al.  Robust signatures of quantum radiation reaction in focused ultrashort laser pulses. , 2014, Physical review letters.

[35]  C. F. R. Caron,et al.  Free-space propagation of ultrashort pulses: Space-time couplings in Gaussian pulse beams , 1999 .

[36]  S. Sepke,et al.  Analytical solutions for the electromagnetic fields of tightly focused laser beams of arbitrary pulse length. , 2006, Optics letters.

[37]  P. Mora,et al.  Theory and simulation of the interaction of ultraintense laser pulses with electrons in vacuum , 1998 .

[38]  Govind P. Agrawal,et al.  Gaussian beam propagation beyond the paraxial approximation , 1979 .

[39]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[40]  Zhizhan Xu,et al.  Space-time profiles of an ultrashort pulsed Gaussian beam , 1997 .

[41]  Andrew G. Glen,et al.  APPL , 2001 .

[42]  H. Gies,et al.  Momentum signatures for Schwinger pair production in short laser pulses with a subcycle structure. , 2009, Physical review letters.

[43]  K. Z. Hatsagortsyan,et al.  Extremely high-intensity laser interactions with fundamental quantum systems , 2011, 1111.3886.

[44]  High-order corrected fields of ultrashort, tightly focused laser pulses , 2004 .

[45]  Z. Bor,et al.  Behaviour of femtosecond pulses on the optical axis of a lens. Analytical description , 1994 .

[46]  E. Fedulova,et al.  High-power multi-megahertz source of waveform-stabilized few-cycle light , 2015, Nature Communications.

[47]  Guoquan Zhou Propagation of a vectorial Laguerre–Gaussian beam beyond the paraxial approximation , 2008 .

[48]  Pierre-Andre Belanger,et al.  From Gaussian beam to complex-source-point spherical wave , 1981 .

[49]  Ferenc Krausz,et al.  Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification. , 2009, Optics letters.

[50]  Ehud Heyman,et al.  Complex-source pulsed-beam fields , 1989 .

[51]  S. Ozaki,et al.  Direct heating of a laser-imploded core by ultraintense laser-driven ions. , 2015, Physical review letters.

[52]  J. Nees,et al.  Ionization-induced self-compression of tightly focused femtosecond laser pulses. , 2014, Physical review letters.

[53]  A. Piazza Ultrarelativistic electron states in a general background electromagnetic field. , 2013, 1310.7856.

[54]  Winful,et al.  Spatiotemporal structure of isodiffracting ultrashort electromagnetic pulses , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.