An SMT Approach to Fractional Hypertree Width

Bounded fractional hypertree width ( Open image in new window ) is the most general known structural property that guarantees polynomial-time solvability of the constraint satisfaction problem. Bounded Open image in new window generalizes other structural properties like bounded induced width and bounded hypertree width.

[1]  Arnaud Durand,et al.  Structural Tractability of Counting of Solutions to Conjunctive Queries , 2013, ICDT '13.

[2]  Eugene C. Freuder A Sufficient Condition for Backtrack-Free Search , 1982, JACM.

[3]  Martin C. Cooper,et al.  Tractability in constraint satisfaction problems: a survey , 2016, Constraints.

[4]  Aric Hagberg,et al.  Exploring Network Structure, Dynamics, and Function using NetworkX , 2008, Proceedings of the Python in Science Conference.

[5]  Maurizio Lenzerini,et al.  Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems , 2018, PODS.

[6]  Paolo Papotti,et al.  Mapping and cleaning , 2014, 2014 IEEE 30th International Conference on Data Engineering.

[7]  Atri Rudra,et al.  FAQ: Questions Asked Frequently , 2015, PODS.

[8]  Stefan Szeider,et al.  SAT-Encodings for Special Treewidth and Pathwidth , 2017, SAT.

[9]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[10]  Michael P. Rogers Python Tutorial , 2009 .

[11]  Nikolaj Bjørner,et al.  Z3: An Efficient SMT Solver , 2008, TACAS.

[12]  Jeff Heflin,et al.  LUBM: A benchmark for OWL knowledge base systems , 2005, J. Web Semant..

[13]  James Demmel,et al.  IEEE Standard for Floating-Point Arithmetic , 2008 .

[14]  Donald J. ROSE,et al.  On simple characterizations of k-trees , 1974, Discret. Math..

[15]  Matti Järvisalo,et al.  SAT-Based Approaches to Treewidth Computation: An Evaluation , 2014, 2014 IEEE 26th International Conference on Tools with Artificial Intelligence.

[16]  Georg Gottlob,et al.  Hypertree decompositions and tractable queries , 1998, J. Comput. Syst. Sci..

[17]  Fabrizio Grandoni,et al.  Resilient dictionaries , 2009, TALG.

[18]  Christian Komusiewicz,et al.  The PACE 2017 Parameterized Algorithms and Computational Experiments Challenge: The Second Iteration , 2017, IPEC.

[19]  Olivier Roussel,et al.  Controlling a Solver Execution with the runsolver Tool , 2011, J. Satisf. Boolean Model. Comput..

[20]  Boris Motik,et al.  Benchmarking the Chase , 2017, PODS.

[21]  Eugene C. Freuder A sufficient condition for backtrack-bounded search , 1985, JACM.

[22]  Stefan Szeider,et al.  SAT-Based Local Improvement for Finding Tree Decompositions of Small Width , 2017, SAT.

[23]  Rolf H. Möhring,et al.  The Pathwidth and Treewidth of Cographs , 1993, SIAM J. Discret. Math..

[24]  Martin Gebser,et al.  Multi-shot ASP solving with clingo , 2017, Theory and Practice of Logic Programming.

[25]  Stefan Szeider,et al.  A SAT Approach to Branchwidth , 2017, IJCAI.

[26]  Georg Gottlob,et al.  A backtracking-based algorithm for hypertree decomposition , 2007, JEAL.

[27]  Georg Gottlob,et al.  On Tractable Queries and Constraints , 1999, DEXA.

[28]  Dániel Marx,et al.  Approximating fractional hypertree width , 2009, TALG.

[29]  Georg Gottlob,et al.  A Backtracking-Based Algorithm for Computing Hypertree-Decompositions , 2007, ArXiv.

[30]  Marc Gyssens,et al.  A unified theory of structural tractability for constraint satisfaction problems , 2008, J. Comput. Syst. Sci..

[31]  Rina Dechter,et al.  Tractable Structures for Constraint Satisfaction Problems , 2006, Handbook of Constraint Programming.

[32]  Sebastian Berndt,et al.  Jdrasil: A Modular Library for Computing Tree Decompositions , 2017, SEA.

[33]  Viktor Leis,et al.  How Good Are Query Optimizers, Really? , 2015, Proc. VLDB Endow..

[34]  Dániel Marx,et al.  Constraint solving via fractional edge covers , 2006, SODA '06.

[35]  Mario Alviano,et al.  Anytime answer set optimization via unsatisfiable core shrinking , 2016, Theory and Practice of Logic Programming.

[36]  Helmut Veith,et al.  Encoding Treewidth into SAT , 2009, SAT.

[37]  Renée J. Miller,et al.  The iBench Integration Metadata Generator , 2015, Proc. VLDB Endow..