A gene signature for post-infectious chronic fatigue syndrome

[1]  T. Chiba,et al.  Blockade of CXCL12/CXCR4 Axis Ameliorates Murine Experimental Colitis , 2008, Journal of Pharmacology and Experimental Therapeutics.

[2]  T. Kawai,et al.  Identification of Marker Genes for Differential Diagnosis of Chronic Fatigue Syndrome , 2008, Molecular medicine.

[3]  Paul Kellam,et al.  Gene expression subtypes in patients with chronic fatigue syndrome/myalgic encephalomyelitis. , 2008, The Journal of infectious diseases.

[4]  B. Burke,et al.  Seven genomic subtypes of chronic fatigue syndrome/myalgic encephalomyelitis: a detailed analysis of gene networks and clinical phenotypes , 2007, Journal of Clinical Pathology.

[5]  M. Rossmann,et al.  Interaction of Decay-Accelerating Factor with Coxsackievirus B3 , 2007, Journal of Virology.

[6]  M. Maes,et al.  Not in the mind of neurasthenic lazybones but in the cell nucleus: patients with chronic fatigue syndrome have increased production of nuclear factor kappa beta. , 2007, Neuro endocrinology letters.

[7]  M. Maes,et al.  Not in the mind but in the cell: increased production of cyclo-oxygenase-2 and inducible NO synthase in chronic fatigue syndrome. , 2007, Neuro endocrinology letters.

[8]  W. Dunsmuir,et al.  Gene expression correlates of postinfective fatigue syndrome after infectious mononucleosis. , 2007, The Journal of infectious diseases.

[9]  Tsuyoshi Konishi,et al.  Gene Expression Signature and the Prediction of Ulcerative Colitis–Associated Colorectal Cancer by DNA Microarray , 2007, Clinical Cancer Research.

[10]  B. Evengård,et al.  Increased number of Candida albicans in the faecal microflora of chronic fatigue syndrome patients during the acute phase of illness , 2007, Scandinavian journal of gastroenterology.

[11]  D. Higgins,et al.  Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data , 2006, BMC Bioinformatics.

[12]  R. Craddock,et al.  Identifying illness parameters in fatiguing syndromes using classical projection methods. , 2006, Pharmacogenomics.

[13]  L. Carmel,et al.  Gene expression profile of empirically delineated classes of unexplained chronic fatigue. , 2006, Pharmacogenomics.

[14]  Weida Tong,et al.  Gene expression profile exploration of a large dataset on chronic fatigue syndrome. , 2006, Pharmacogenomics.

[15]  Eric Aslakson,et al.  Polymorphisms in genes regulating the HPA axis associated with empirically delineated classes of unexplained chronic fatigue. , 2006, Pharmacogenomics.

[16]  H. Gräns,et al.  Gene expression profiling in the chronic fatigue syndrome , 2005, Journal of internal medicine.

[17]  RAINER BREITLING,et al.  Rank-based Methods as a Non-parametric Alternative of the T-statistic for the Analysis of Biological Microarray Data , 2005, J. Bioinform. Comput. Biol..

[18]  Gwen Kennedy,et al.  Oxidative stress levels are raised in chronic fatigue syndrome and are associated with clinical symptoms. , 2005, Free radical biology & medicine.

[19]  S T Holgate,et al.  Gene expression in peripheral blood mononuclear cells from patients with chronic fatigue syndrome , 2005, Journal of Clinical Pathology.

[20]  S. Wessely,et al.  Association of chronic fatigue syndrome with human leucocyte antigen class II alleles , 2005, Journal of Clinical Pathology.

[21]  James F. Jones,et al.  Exercise responsive genes measured in peripheral blood of women with Chronic Fatigue Syndrome and matched control subjects , 2005, BMC Physiology.

[22]  Tatiana A. Tatusova,et al.  Entrez Gene: gene-centered information at NCBI , 2004, Nucleic Acids Res..

[23]  James F. Jones,et al.  Differential-display PCR of peripheral blood for biomarker discovery in chronic fatigue syndrome , 2004, Journal of Molecular Medicine.

[24]  K. Becker,et al.  Antigen-Specific Gene Expression Profiles of Peripheral Blood Mononuclear Cells Do Not Reflect Those of T-Lymphocyte Subsets , 2004, Clinical Diagnostic Laboratory Immunology.

[25]  Rainer Breitling,et al.  Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments , 2004, FEBS letters.

[26]  G. Kennedy,et al.  Increased neutrophil apoptosis in chronic fatigue syndrome , 2004, Journal of Clinical Pathology.

[27]  Terence P. Speed,et al.  A benchmark for Affymetrix GeneChip expression measures , 2004, Bioinform..

[28]  Elizabeth R. Unger,et al.  Utility of the Blood for Gene Expression Profiling and Biomarker Discovery in Chronic Fatigue Syndrome , 2003, Disease markers.

[29]  T. Speed,et al.  Summaries of Affymetrix GeneChip probe level data. , 2003, Nucleic acids research.

[30]  T. Bucciarelli,et al.  Relationship between musculoskeletal symptoms and blood markers of oxidative stress in patients with chronic fatigue syndrome , 2003, Neuroscience Letters.

[31]  M. Xiong,et al.  A 588-gene microarray analysis of the peripheral blood mononuclear cells of spondyloarthropathy patients. , 2002, Rheumatology.

[32]  J. Vertommen,et al.  Antioxidant status and lipoprotein peroxidation in chronic fatigue syndrome. , 2001, Life sciences.

[33]  H. Butt,et al.  Blood parameters indicative of oxidative stress are associated with symptom expression in chronic fatigue syndrome , 2000, Redox report : communications in free radical research.

[34]  A. Rademaker,et al.  A community-based study of chronic fatigue syndrome. , 1999, Archives of internal medicine.

[35]  R. Moss,et al.  TNF-α and Chronic Fatigue Syndrome , 1999, Journal of Clinical Immunology.

[36]  C. Watson,et al.  DNA chip technolgy , 1999, The Journal of pathology.

[37]  D. T. Williams,et al.  A decay-accelerating factor-binding strain of coxsackievirus B3 requires the coxsackievirus-adenovirus receptor protein to mediate lytic infection of rhabdomyosarcoma cells , 1997, Journal of virology.

[38]  S. Wessely,et al.  The prevalence and morbidity of chronic fatigue and chronic fatigue syndrome: a prospective primary care study. , 1997, American journal of public health.

[39]  L. Tsenova,et al.  Early Lyme disease: Humoral immune status and treatment. , 1997, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[40]  J. Gow,et al.  Long RT-PCR amplification of full-length enterovirus genome. , 1996, BioTechniques.

[41]  S. Wessely,et al.  Postinfectious fatigue: prospective cohort study in primary care , 1995, The Lancet.

[42]  B. Nowicki,et al.  dra-related X adhesins of gestational pyelonephritis-associated Escherichia coli recognize SCR-3 and SCR-4 domains of recombinant decay-accelerating factor , 1995, Infection and immunity.

[43]  Ian Hickie,et al.  The Chronic Fatigue Syndrome: A Comprehensive Approach to Its Definition and Study , 1994, Annals of Internal Medicine.

[44]  Dedra Buchwald,et al.  Gender differences in patients with chronic fatigue syndrome , 1994, Journal of General Internal Medicine.

[45]  R. Finberg,et al.  Decay-accelerating factor expression on either effector or target cells inhibits cytotoxicity by human natural killer cells. , 1992, Journal of immunology.

[46]  P. Behan,et al.  Changes in natural killer cell phenotype in patients with post‐viral fatigue syndrome , 1991, Clinical and experimental immunology.

[47]  Alex E. Lash,et al.  Gene Expression Omnibus: NCBI gene expression and hybridization array data repository , 2002, Nucleic Acids Res..

[48]  R. Moss,et al.  TNF-alpha and chronic fatigue syndrome. , 1999, Journal of clinical immunology.

[49]  H. Blum,et al.  [DNA chip technology]. , 1999, Deutsche medizinische Wochenschrift.

[50]  P. Behan,et al.  Genomic and template RNA transcription in a model of persistent enteroviral infection. , 1997, Journal of neurovirology.

[51]  I. Hickie,et al.  Bmc Infectious Diseases Preliminary Evidence of Mitochondrial Dysfunction Associated with Post-infective Fatigue after Acute Infection with Epstein Barr Virus , 2022 .