Multigraph augmentation under biconnectivity and general edge-connectivity requirements

Given an undirected multigraph G = (V, E) and a requirement function rλ: () → Z+ (where () is the set of all pairs of vertices and Z+ is the set of nonnegative integers), we consider the problem of augmenting G by the smallest number of new edges so that the local edge-connectivity and vertex-connectivity between every pair x, y ∈ V become at least rλ(x, y) and two, respectively. In this paper, we show that the problem can be solved in O(n3(m + n) log(n2/(m + n))) time, where n and m are the numbers of vertices and pairs of adjacent vertices in G, respectively. This time complexity can be improved to O((nm + n2 log n) log n), in the case of the uniform requirement rλ(x, y)= for all x, y ∈ V. Furthermore, for the general rλ, we show that the augmentation problem that preserves the simplicity of the resulting graph can be solved in polynomial time for any fixed * = max{rλ(x, y) | x, y ∈ V}. © 2001 John Wiley & Sons, Inc.

[1]  Tibor Jordán Two NP-Complete Augmentation Problems , 1997 .

[2]  L. Lovász Combinatorial problems and exercises , 1979 .

[3]  Tibor Jordán,et al.  Edge-connectivity augmentation preserving simplicity , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[4]  Harold N. Gabow,et al.  Efficient splitting off algorithms for graphs , 1994, STOC '94.

[5]  G. Kant Algorithms for drawing planar graphs , 1993 .

[6]  Goos Kant,et al.  Augmenting Outerplanar Graphs , 1996, J. Algorithms.

[7]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[8]  Toshihide Ibaraki,et al.  Optimal Augmentation of a 2-Vertex-Connected Multigraph to a k-Edge-Connected and 3-Vertex-Connected Multigraph , 2000, J. Comb. Optim..

[9]  Ming-Yang Kao,et al.  Optimal Bi-Level Augmentation for Selectivity Enhancing Graph Connectivity with Applications , 1996, COCOON.

[10]  Toshihide Ibaraki,et al.  Augmenting a (kappa-1)-Vertex-Connected Multigraph to an iota-Edge-Connected and kappa-Vertex-Connected Multigraph , 1999, ESA.

[11]  Tsan-sheng Hsu,et al.  Finding a Smallest Augmentation to Biconnect a Graph , 1993, SIAM J. Comput..

[12]  W. Mader A Reduction Method for Edge-Connectivity in Graphs , 1978 .

[13]  András Frank Augmenting Graphs to Meet Edge-Connectivity Requirements , 1992, SIAM J. Discret. Math..

[14]  Tsan-sheng Hsu Undirected Vertex-Connectivity Structure and Smallest Four-Vertex-Connectivity Augmentation , 1995, ISAAC.

[15]  Tsan-sheng Hsu On Four-Connecting a Triconnected Graph , 2000, J. Algorithms.

[16]  T. C. Hu,et al.  Multi-Terminal Network Flows , 1961 .

[17]  Toshihide Ibaraki,et al.  K-Edge and 3-Vertex Connectivity Augmentation in an Arbitrary Multigraph , 1998, ISAAC.

[18]  Toshihide Ibaraki,et al.  Deterministic Õ(nm) Time Edge-Splitting in Undirected Graphs , 1997, J. Comb. Optim..

[19]  Tibor Jordán,et al.  On the Optimal Vertex-Connectivity Augmentation , 1995, J. Comb. Theory B.

[20]  Robert E. Tarjan,et al.  Augmentation Problems , 1976, SIAM J. Comput..

[21]  Toshihide Ibaraki,et al.  A Simplified Õ(nm) Time Edge-Splitting Algorithm in Undirected Graphs , 2000, Algorithmica.

[22]  Guo-Ray Cai,et al.  The minimum augmentation of any graph to a K-edge-connected graph , 1989, Networks.

[23]  Harold N. Gabow,et al.  Applications of a poset representation to edge connectivity and graph rigidity , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[24]  Siam Staff,et al.  Edge-Connectivity Augmentation Preserving Simplicity , 1998 .

[25]  Tibor Jordán,et al.  A Note on the Vertex-Connectivity Augmentation Problem , 1997, J. Comb. Theory, Ser. B.

[26]  Tsan-sheng Hsu,et al.  A linear time algorithm for triconnectivity augmentation , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[27]  Ming-Yang Kao,et al.  Data Security Equals Graph Connectivity , 1996, SIAM J. Discret. Math..

[28]  Akira Nakamura,et al.  Edge-Connectivity Augmentation Problems , 1987, J. Comput. Syst. Sci..

[29]  Akira Nakamura,et al.  A Minimum 3-Connectivity Augmentation of a Graph , 1993, J. Comput. Syst. Sci..