The Geometry of the Painlev\'e paradox
暂无分享,去创建一个
S. John Hogan | Kristian Uldall Kristiansen | Noah Cheesman | K. U. Kristiansen | S. Hogan | Noah Cheesman
[1] The painleve paradoxes and the law of motion of mechanical systems with Coulomb friction , 1990 .
[2] Caishan Liu,et al. Experimental Investigation of the Painlevé Paradox in a Robotic System , 2008 .
[3] Pierre E. Dupont,et al. Stability of frictional contact in constrained rigid-body dynamics , 1997, IEEE Trans. Robotics Autom..
[4] Yizhar Or,et al. Investigation of Painlevé’s paradox and dynamic jamming during mechanism sliding motion , 2012 .
[5] H. Cohen,et al. The occurrence of Painleve's paradox in the motion of a rotating shaft , 1997 .
[6] Yunian Shen,et al. Painlevé paradox during oblique impact with friction , 2011 .
[7] P. Panagiotopoulos,et al. Nonsmooth Mechanics I , 1996 .
[8] Bin Chen,et al. The bouncing motion appearing in a robotic system with unilateral constraint , 2007 .
[9] Alan R. Champneys,et al. Dynamics Beyond Dynamic Jam; Unfolding the Painlevé Paradox Singularity , 2018, SIAM J. Appl. Dyn. Syst..
[10] Yunian Shen. Painlevé paradox and dynamic jam of a three-dimensional elastic rod , 2015 .
[11] P. Painlevé,et al. Sur les lois du frottement de glissement , 2012 .
[12] Péter L. Várkonyi. On the Stability of Rigid Multibody Systems With Applications to Robotic Grasping and Locomotion , 2015 .
[13] J. Keller. Impact With Friction , 1986 .
[14] Singularities in the dynamics of systems with non-ideal constraints☆ , 2003 .
[15] A. Ivanov. On the correctness of the basic problem of dynamics in systems with friction , 1986 .
[16] H. Elkaranshawy,et al. Solving Painlevé paradox: (P–R) sliding robot case , 2017 .
[17] Shane J. Burns,et al. Numerical Location of Painlevé Paradox-Associated Jam and Lift-Off in a Double-Pendulum Mechanism , 2017 .
[18] H. Beghin. Sur certains problèmes de frottement , 1923 .
[19] B. Brogliato,et al. New results on Painlevé paradoxes , 1999 .
[20] Yizhar Or,et al. Painlevé’s paradox and dynamic jamming in simple models of passive dynamic walking , 2014 .
[21] Bernard Brogliato,et al. The contact problem in Lagrangian systems subject to bilateral and unilateral constraints, with or without sliding Coulomb’s friction: a tutorial , 2016, Multibody System Dynamics.
[22] R. Fricke,et al. Zu Painlevés Kritik der Coulombschen Reibungsgesetze , 1922 .
[23] Per Lötstedt. Coulomb Friction in Two-Dimensional Rigid Body Systems , 1981 .
[24] Alan R. Champneys,et al. The Painleve paradox in contact mechanics , 2016, ArXiv.
[25] Henk Nijmeijer,et al. Periodic motion and bifurcations induced by the Painlevé paradox , 2002 .
[26] É. Delassus. Considérations sur le frottement de glissement , 1920 .
[27] Yu.I. Neimark,et al. The Painlevé paradoxes and the dynamics of a brake shoe , 1995 .
[28] P. Várkonyi. Transitions and singularities during slip motion of rigid bodies , 2017, European Journal of Applied Mathematics.
[29] Stephen John Hogan,et al. Le Canard de Painlevé , 2017, SIAM J. Appl. Dyn. Syst..
[30] N. McClamroch,et al. A singular perturbation approach to modeling and control of manipulators constrained by a stiff environment , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.
[31] B. Brogliato,et al. Asymptotic analysis of Painlevé’s paradox , 2015 .
[33] David E. Stewart,et al. Rigid-Body Dynamics with Friction and Impact , 2000, SIAM Rev..
[34] Bin Chen,et al. The Painlevé paradox studied at a 3D slender rod , 2008 .
[35] K. Uldall Kristiansen,et al. On the regularization of impact without collision: the Painlevé paradox and compliance , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[36] G. Darboux. Étude géométrique sur les percussions et le choc des corps , 1880 .
[37] Péter L. Várkonyi. Dynamics of mechanical systems with two sliding contacts: new facets of Painlevé’s paradox , 2017 .