The Geometry of the Painlev\'e paradox

Abstract. Painlevé showed that there can be inconsistency and indeterminacy in solutions to the equations of motion of a 2D rigid body moving on a sufficiently rough surface. The study of Painlevé paradoxes in 3D has received far less attention. In this paper, we highlight the pivotal role in the dynamics of the azimuthal angular velocity Ψ by proving the existence of three critical values of Ψ, one of which occurs independently of any paradox. We show that the 2D problem is highly singular and uncover a rich geometry in the 3D problem which we use to explain recent numerical results.

[1]  The painleve paradoxes and the law of motion of mechanical systems with Coulomb friction , 1990 .

[2]  Caishan Liu,et al.  Experimental Investigation of the Painlevé Paradox in a Robotic System , 2008 .

[3]  Pierre E. Dupont,et al.  Stability of frictional contact in constrained rigid-body dynamics , 1997, IEEE Trans. Robotics Autom..

[4]  Yizhar Or,et al.  Investigation of Painlevé’s paradox and dynamic jamming during mechanism sliding motion , 2012 .

[5]  H. Cohen,et al.  The occurrence of Painleve's paradox in the motion of a rotating shaft , 1997 .

[6]  Yunian Shen,et al.  Painlevé paradox during oblique impact with friction , 2011 .

[7]  P. Panagiotopoulos,et al.  Nonsmooth Mechanics I , 1996 .

[8]  Bin Chen,et al.  The bouncing motion appearing in a robotic system with unilateral constraint , 2007 .

[9]  Alan R. Champneys,et al.  Dynamics Beyond Dynamic Jam; Unfolding the Painlevé Paradox Singularity , 2018, SIAM J. Appl. Dyn. Syst..

[10]  Yunian Shen Painlevé paradox and dynamic jam of a three-dimensional elastic rod , 2015 .

[11]  P. Painlevé,et al.  Sur les lois du frottement de glissement , 2012 .

[12]  Péter L. Várkonyi On the Stability of Rigid Multibody Systems With Applications to Robotic Grasping and Locomotion , 2015 .

[13]  J. Keller Impact With Friction , 1986 .

[14]  Singularities in the dynamics of systems with non-ideal constraints☆ , 2003 .

[15]  A. Ivanov On the correctness of the basic problem of dynamics in systems with friction , 1986 .

[16]  H. Elkaranshawy,et al.  Solving Painlevé paradox: (P–R) sliding robot case , 2017 .

[17]  Shane J. Burns,et al.  Numerical Location of Painlevé Paradox-Associated Jam and Lift-Off in a Double-Pendulum Mechanism , 2017 .

[18]  H. Beghin Sur certains problèmes de frottement , 1923 .

[19]  B. Brogliato,et al.  New results on Painlevé paradoxes , 1999 .

[20]  Yizhar Or,et al.  Painlevé’s paradox and dynamic jamming in simple models of passive dynamic walking , 2014 .

[21]  Bernard Brogliato,et al.  The contact problem in Lagrangian systems subject to bilateral and unilateral constraints, with or without sliding Coulomb’s friction: a tutorial , 2016, Multibody System Dynamics.

[22]  R. Fricke,et al.  Zu Painlevés Kritik der Coulombschen Reibungsgesetze , 1922 .

[23]  Per Lötstedt Coulomb Friction in Two-Dimensional Rigid Body Systems , 1981 .

[24]  Alan R. Champneys,et al.  The Painleve paradox in contact mechanics , 2016, ArXiv.

[25]  Henk Nijmeijer,et al.  Periodic motion and bifurcations induced by the Painlevé paradox , 2002 .

[26]  É. Delassus Considérations sur le frottement de glissement , 1920 .

[27]  Yu.I. Neimark,et al.  The Painlevé paradoxes and the dynamics of a brake shoe , 1995 .

[28]  P. Várkonyi Transitions and singularities during slip motion of rigid bodies , 2017, European Journal of Applied Mathematics.

[29]  Stephen John Hogan,et al.  Le Canard de Painlevé , 2017, SIAM J. Appl. Dyn. Syst..

[30]  N. McClamroch,et al.  A singular perturbation approach to modeling and control of manipulators constrained by a stiff environment , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[31]  B. Brogliato,et al.  Asymptotic analysis of Painlevé’s paradox , 2015 .

[33]  David E. Stewart,et al.  Rigid-Body Dynamics with Friction and Impact , 2000, SIAM Rev..

[34]  Bin Chen,et al.  The Painlevé paradox studied at a 3D slender rod , 2008 .

[35]  K. Uldall Kristiansen,et al.  On the regularization of impact without collision: the Painlevé paradox and compliance , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[36]  G. Darboux Étude géométrique sur les percussions et le choc des corps , 1880 .

[37]  Péter L. Várkonyi Dynamics of mechanical systems with two sliding contacts: new facets of Painlevé’s paradox , 2017 .