Statistical Study of Machine Learning Algorithms Using Parametric and Non-Parametric Tests: A Comparative Analysis and Recommendations

[1]  Maya R. Gupta,et al.  Bayesian Quadratic Discriminant Analysis , 2007, J. Mach. Learn. Res..

[2]  David A. Landgrebe,et al.  A survey of decision tree classifier methodology , 1991, IEEE Trans. Syst. Man Cybern..

[3]  J. Friedman Stochastic gradient boosting , 2002 .

[4]  Sankar K. Pal,et al.  Multilayer perceptron, fuzzy sets, and classification , 1992, IEEE Trans. Neural Networks.

[5]  O. J. Dunn Multiple Comparisons among Means , 1961 .

[6]  Maya R. Gupta,et al.  Distribution-based Bayesian Minimum Expected Risk for Discriminant Analysis , 2006, 2006 IEEE International Symposium on Information Theory.

[7]  S. García,et al.  An Extension on "Statistical Comparisons of Classifiers over Multiple Data Sets" for all Pairwise Comparisons , 2008 .

[8]  Yang Liu,et al.  Multi-class sentiment classification: The experimental comparisons of feature selection and machine learning algorithms , 2017, Expert Syst. Appl..

[9]  Francisco Herrera,et al.  A study on the use of statistical tests for experimentation with neural networks: Analysis of parametric test conditions and non-parametric tests , 2007, Expert Syst. Appl..

[10]  A. Laliberte,et al.  Comparison of Nearest Neighbor and Rule-based Decision Tree Classification in an Object-oriented Environment , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[11]  Sanjay Kumar Dubey,et al.  Comparative Analysis of K-Means and Fuzzy C- Means Algorithms , 2013 .

[12]  Thomas Blaschke,et al.  Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms , 2010, Int. J. Appl. Earth Obs. Geoinformation.

[13]  Sheng-Tun Li,et al.  The evaluation of consumer loans using support vector machines , 2006, Expert Syst. Appl..

[14]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[15]  Johannes R. Sveinsson,et al.  Random Forests for land cover classification , 2006, Pattern Recognit. Lett..

[16]  Marti A. Hearst Trends & Controversies: Support Vector Machines , 1998, IEEE Intell. Syst..

[17]  Alois Knoll,et al.  Gradient boosting machines, a tutorial , 2013, Front. Neurorobot..

[18]  James M. Keller,et al.  A fuzzy K-nearest neighbor algorithm , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[19]  Thomas G. Dietterich Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms , 1998, Neural Computation.

[20]  Jessica Granderson,et al.  Gradient boosting machine for modeling the energy consumption of commercial buildings , 2018 .

[21]  L. S. Davis,et al.  An assessment of support vector machines for land cover classi(cid:142) cation , 2002 .

[22]  Peter L. Bartlett,et al.  Boosting Algorithms as Gradient Descent , 1999, NIPS.

[23]  Toby Sharp,et al.  Real-time human pose recognition in parts from single depth images , 2011, CVPR.

[24]  Steven E. Franklin,et al.  A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery , 2012 .

[25]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.

[26]  Cheng Li,et al.  A Feature-Scaling-Based k-Nearest Neighbor Algorithm for Indoor Positioning Systems , 2016, IEEE Internet Things J..

[27]  Rodney X. Sturdivant,et al.  Applied Logistic Regression: Hosmer/Applied Logistic Regression , 2005 .

[28]  Nilanjan Dey,et al.  Applied Machine Learning for Smart Data Analysis , 2019 .

[29]  Ji-Hyun Kim,et al.  Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap , 2009, Comput. Stat. Data Anal..

[30]  Shian-Chang Huang,et al.  Evaluation of ANN and SVM classifiers as predictors to the diagnosis of students with learning disabilities , 2008, Expert Syst. Appl..

[31]  M. Zekic-Susac,et al.  Modeling computer and web attitudes using neural networks , 2005, 27th International Conference on Information Technology Interfaces, 2005..

[32]  Yoshua Bengio,et al.  No Unbiased Estimator of the Variance of K-Fold Cross-Validation , 2003, J. Mach. Learn. Res..

[33]  S. P. Wright,et al.  Adjusted P-values for simultaneous inference , 1992 .

[34]  Rich Caruana,et al.  An empirical comparison of supervised learning algorithms , 2006, ICML.

[35]  Beng Chin Ooi,et al.  iDistance: An adaptive B+-tree based indexing method for nearest neighbor search , 2005, TODS.

[36]  Athanasios V. Vasilakos,et al.  Data Mining for the Internet of Things: Literature Review and Challenges , 2015, Int. J. Distributed Sens. Networks.

[37]  Philip S. Yu,et al.  Top 10 algorithms in data mining , 2007, Knowledge and Information Systems.

[38]  Christopher J. C. Burges,et al.  A Tutorial on Support Vector Machines for Pattern Recognition , 1998, Data Mining and Knowledge Discovery.

[39]  Yue Wu,et al.  A New Intrusion Detection System Based on KNN Classification Algorithm in Wireless Sensor Network , 2014, J. Electr. Comput. Eng..

[40]  Aiiad Albeshri,et al.  Analysis of Eight Data Mining Algorithms for Smarter Internet of Things (IoT) , 2016, EUSPN/ICTH.

[41]  Pedro M. Domingos,et al.  On the Optimality of the Simple Bayesian Classifier under Zero-One Loss , 1997, Machine Learning.

[42]  David D. Lewis,et al.  Naive (Bayes) at Forty: The Independence Assumption in Information Retrieval , 1998, ECML.

[43]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[44]  A. Brenning Benchmarking classifiers to optimally integrate terrain analysis and multispectral remote sensing in automatic rock glacier detection , 2009 .

[45]  Taghi M. Khoshgoftaar,et al.  Experimental perspectives on learning from imbalanced data , 2007, ICML '07.

[46]  H. T. Mouftah,et al.  Soft Sensing in Smart Cities: Handling 3Vs Using Recommender Systems, Machine Intelligence, and Data Analytics , 2018, IEEE Communications Magazine.

[47]  C. Y. Peng,et al.  An Introduction to Logistic Regression Analysis and Reporting , 2002 .

[48]  Mahesh Pal,et al.  Random forest classifier for remote sensing classification , 2005 .

[49]  R. Iman,et al.  Approximations of the critical region of the fbietkan statistic , 1980 .

[50]  Kristin P. Bennett,et al.  Support vector machines: hype or hallelujah? , 2000, SKDD.

[51]  Edward Curry,et al.  An Autonomic Approach to Real-Time Predictive Analytics Using Open Data and Internet of Things , 2014, 2014 IEEE 11th Intl Conf on Ubiquitous Intelligence and Computing and 2014 IEEE 11th Intl Conf on Autonomic and Trusted Computing and 2014 IEEE 14th Intl Conf on Scalable Computing and Communications and Its Associated Workshops.

[52]  M. Friedman A Comparison of Alternative Tests of Significance for the Problem of $m$ Rankings , 1940 .

[53]  J. R. Quinlan DECISION TREES AS PROBABILISTIC CLASSIFIERS , 1987 .

[54]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[55]  Y. Hochberg A sharper Bonferroni procedure for multiple tests of significance , 1988 .

[56]  Sahibsingh A. Dudani The Distance-Weighted k-Nearest-Neighbor Rule , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[57]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[58]  Rumi Ghosh,et al.  Manufacturing Analytics and Industrial Internet of Things , 2017, IEEE Intelligent Systems.

[59]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[60]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[61]  Zbigniew Telec,et al.  Nonparametric statistical analysis for multiple comparison of machine learning regression algorithms , 2012, Int. J. Appl. Math. Comput. Sci..

[62]  Yong-Soo Kim,et al.  Comparison of the decision tree, artificial neural network, and linear regression methods based on the number and types of independent variables and sample size , 2008, Expert Syst. Appl..

[63]  LiuYang,et al.  Multi-class sentiment classification , 2017 .