Mitochondrial metabolism of glucose and glutamine is required for intracellular growth of Toxoplasma gondii.

Toxoplasma gondii proliferates within host cell vacuoles where the parasite relies on host carbon and nutrients for replication. To assess how T. gondii utilizes these resources, we mapped the carbon metabolism pathways in intracellular and egressed parasite stages. We determined that intracellular T. gondii stages actively catabolize host glucose via a canonical, oxidative tricarboxylic acid (TCA) cycle, a mitochondrial pathway in which organic molecules are broken down to generate energy. These stages also catabolize glutamine via the TCA cycle and an unanticipated γ-aminobutyric acid (GABA) shunt, which generates GABA and additional molecules that enter the TCA cycle. Chemically inhibiting the TCA cycle completely prevents intracellular parasite replication. Parasites lacking the GABA shunt exhibit attenuated growth and are unable to sustain motility under nutrient-limited conditions, suggesting that GABA functions as a short-term energy reserve. Thus, T. gondii tachyzoites have metabolic flexibility that likely allows the parasite to infect diverse cell types.

[1]  Michael S. Behnke,et al.  A Systematic Screen to Discover and Analyze Apicoplast Proteins Identifies a Conserved and Essential Protein Import Factor , 2011, PLoS pathogens.

[2]  Elizabeth L. Johnson,et al.  Quiescent Fibroblasts Exhibit High Metabolic Activity , 2010, PLoS biology.

[3]  Dominique Soldati-Favre,et al.  Versatility in the acquisition of energy and carbon sources by the Apicomplexa , 2010, Biology of the cell.

[4]  Dominique Soldati-Favre,et al.  Host-derived glucose and its transporter in the obligate intracellular pathogen Toxoplasma gondii are dispensable by glutaminolysis , 2009, Proceedings of the National Academy of Sciences.

[5]  N. von Ahsen,et al.  Extracellular Toxoplasma gondii tachyzoites do not require carbon source uptake for ATP maintenance, gliding motility and invasion in the first hour of their extracellular life. , 2011, International journal for parasitology.

[6]  R. Waller,et al.  Alveolate mitochondrial metabolic evolution: dinoflagellates force reassessment of the role of parasitism as a driver of change in apicomplexans. , 2013, Molecular biology and evolution.

[7]  L. Weiss,et al.  Toxoplasmosis: A history of clinical observations. , 2009, International journal for parasitology.

[8]  Karsten Fischer,et al.  The toxoplasma apicoplast phosphate translocator links cytosolic and apicoplast metabolism and is essential for parasite survival. , 2010, Cell host & microbe.

[9]  L. Reed,et al.  Purification and characterization of branched chain alpha-keto acid dehydrogenase complex of bovine kidney. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[10]  B. Striepen,et al.  Make It or Take It: Fatty Acid Metabolism of Apicomplexan Parasites , 2007, Eukaryotic Cell.

[11]  L. Sibley,et al.  Aldolase is essential for energy production and bridging adhesin-actin cytoskeletal interactions during parasite invasion of host cells. , 2009, Cell host & microbe.

[12]  Michael P. Murphy,et al.  How mitochondria produce reactive oxygen species , 2008, The Biochemical journal.

[13]  C. Roberts,et al.  Enzymes of energy metabolism in the bradyzoites and tachyzoites of Toxoplasma gondii. , 1996, FEMS microbiology letters.

[14]  U. Groß,et al.  Type II NADH Dehydrogenase Inhibitor 1-Hydroxy-2-Dodecyl- 4(1H)Quinolone Leads to Collapse of Mitochondrial Inner- Membrane Potential and ATP Depletion in Toxoplasma gondii , 2009, Eukaryotic Cell.

[15]  S. Parmley,et al.  The Expression of Lactate Dehydrogenase Is Important for the Cell Cycle of Toxoplasma gondii* , 2004, Journal of Biological Chemistry.

[16]  G. McConkey,et al.  Toxoplasma gondii-altered host behaviour: clues as to mechanism of action. , 2010, Folia parasitologica.

[17]  A. Vaidya,et al.  Atovaquone, a Broad Spectrum Antiparasitic Drug, Collapses Mitochondrial Membrane Potential in a Malarial Parasite* , 1997, The Journal of Biological Chemistry.

[18]  K. Wellen,et al.  Cellular metabolic stress: considering how cells respond to nutrient excess. , 2010, Molecular cell.

[19]  J. Dubremetz,et al.  Toxoplasma gondii: redistribution of monoclonal antibodies on tachyzoites during host cell invasion. , 1985, Experimental parasitology.

[20]  D. Lindsay,et al.  Structures of Toxoplasma gondiiTachyzoites, Bradyzoites, and Sporozoites and Biology and Development of Tissue Cysts , 1998, Clinical Microbiology Reviews.

[21]  D. Roos,et al.  Divergent polyamine metabolism in the Apicomplexa. , 2007, Microbiology.

[22]  K. Joiner,et al.  The parasitophorous vacuole membrane surrounding intracellular Toxoplasma gondii functions as a molecular sieve. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Eleanor C. Saunders,et al.  Isotopomer Profiling of Leishmania mexicana Promastigotes Reveals Important Roles for Succinate Fermentation and Aspartate Uptake in Tricarboxylic Acid Cycle (TCA) Anaplerosis, Glutamate Synthesis, and Growth* , 2011, The Journal of Biological Chemistry.

[24]  Uwe Gross,et al.  Localisation of gluconeogenesis and tricarboxylic acid (TCA)-cycle enzymes and first functional analysis of the TCA cycle in Toxoplasma gondii. , 2008, International journal for parasitology.

[25]  J. Gigley,et al.  Efficient Gene Replacements in Toxoplasma gondii Strains Deficient for Nonhomologous End Joining , 2009, Eukaryotic Cell.

[26]  Uwe Gross,et al.  Carbohydrate Metabolism in the Toxoplasma gondii Apicoplast: Localization of Three Glycolytic Isoenzymes, the Single Pyruvate Dehydrogenase Complex, and a Plastid Phosphate Translocator , 2007, Eukaryotic Cell.

[27]  C. Beckers,et al.  Host Cell Egress and Invasion Induce Marked Relocations of Glycolytic Enzymes in Toxoplasma gondii Tachyzoites , 2008, PLoS pathogens.

[28]  A E Vercesi,et al.  Respiration and Oxidative Phosphorylation in the Apicomplexan Parasite Toxoplasma gondii * , 1998, The Journal of Biological Chemistry.

[29]  D. Roos,et al.  Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. , 2001, Molecular biology and evolution.

[30]  C. Donnelly,et al.  Specificity of the Toxoplasma gondii-altered behaviour to definitive versus non-definitive host predation risk , 2008, Parasitology.

[31]  L. Sibley,et al.  Toxoplasma gondii Strains Defective in Oral Transmission Are Also Defective in Developmental Stage Differentiation , 2007, Infection and Immunity.

[32]  U. Groß,et al.  Two internal type II NADH dehydrogenases of Toxoplasma gondii are both required for optimal tachyzoite growth , 2011, Molecular microbiology.

[33]  D. Scott,et al.  The 2‐oxoacid dehydrogenase multi‐enzyme complex of the archaeon Thermoplasma acidophilum − recombinant expression, assembly and characterization , 2007, The FEBS journal.

[34]  Joanne M. Morrisey,et al.  Branched Tricarboxylic Acid Metabolism in Plasmodium falciparum , 2010, Nature.

[35]  B. Striepen,et al.  Apicoplast fatty acid synthesis is essential for organelle biogenesis and parasite survival in Toxoplasma gondii , 2006, Proceedings of the National Academy of Sciences.

[36]  A. Kastaniotis,et al.  Apicoplast and Endoplasmic Reticulum Cooperate in Fatty Acid Biosynthesis in Apicomplexan Parasite Toxoplasma gondii* , 2011, The Journal of Biological Chemistry.

[37]  M. Huynh,et al.  Tagging of Endogenous Genes in a Toxoplasma gondii Strain Lacking Ku80 , 2009, Eukaryotic Cell.

[38]  M. Hirai,et al.  Critical roles of the mitochondrial complex II in oocyst formation of rodent malaria parasite Plasmodium berghei. , 2012, Journal of biochemistry.

[39]  K. Kirk,et al.  Metabolite profiling of the intraerythrocytic malaria parasite Plasmodium falciparum by 1H NMR spectroscopy , 2009, NMR in biomedicine.

[40]  J. Webster The effect of Toxoplasma gondii on animal behavior: playing cat and mouse. , 2007, Schizophrenia bulletin.

[41]  K. Kirk,et al.  Nutrient acquisition by intracellular apicomplexan parasites: staying in for dinner. , 2001, International journal for parasitology.

[42]  Dominique Soldati-Favre,et al.  Dual Targeting of Antioxidant and Metabolic Enzymes to the Mitochondrion and the Apicoplast of Toxoplasma gondii , 2007, PLoS pathogens.

[43]  K. Polizzi,et al.  In Situ Monitoring of Intracellular Glucose and Glutamine in CHO Cell Culture , 2012, PloS one.

[44]  D. Soldati-Favre,et al.  Apicomplexan mitochondrial metabolism: a story of gains, losses and retentions. , 2008, Trends in parasitology.

[45]  S. Ralph,et al.  Membrane transporters in the relict plastid of malaria parasites. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Joachim Schachtner,et al.  Toxoplasma gondii scavenges host‐derived lipoic acid despite its de novo synthesis in the apicoplast , 2006, The EMBO journal.