Passive dispersal in arachnids

Some arachnids (spiders, mites and pseudoscorpions) are able to use both active and passive dispersal. The best-known passive dispersal method in arachnids is called eballooningi and starts with etiptoe behaviouri. Using threads of silk, spiders can move from place to place with air currents. Usually the spider aeronauts are small, but sometimes larger ones can also be transported in this way. Some mites spread passively also by using threads of silk, or use their own body as a carrying surface. A great number of mite species intentionally use other animals (e.g. insects) as carriers, and this phenomenon is known as phoresy. Similarly, pseudoscorpions sometimes infest insects. The most probable reasons that may cause passive dispersal are: overpopulation, changeable physical conditions, and ecocatastrophe. Passive dispersal is one of the major ways of colonization of new areas and habitats, which extends geographical ranges of species. The oldest traces of passive dispersal come from the Tertiary period, but it is thought to have existed also in the late Mesozoic. From an evolutionary point of view, the most interesting is the phoront-host relationship, as a result of co-evolution (e.g. Rhinoseius mites with hummingbirds).

[1]  W. Bristowe 67. A Preliminary Note on the Spiders of Krakatau. , 2009 .

[2]  W. Bristowe The Distribution and Dispersal of Spiders. , 2009 .

[3]  ANTARCTIC ENTOMOLOGY WITH EMPHASIS ON BIOGEOGRAPHICAL ASPECTS , 2006 .

[4]  David A. Bohan,et al.  Ballooning dispersal using silk: world fauna, phylogenies, genetics and models. , 2005, Bulletin of entomological research.

[5]  M. Zalucki,et al.  Spider ballooning in soybean and non-crop areas of southeast Queensland , 2005 .

[6]  D. W. Zeh,et al.  Failed predation or transportation? Causes and consequences of phoretic behavior in the pseudoscorpionDinocheirus arizonensis (Pseudoscorpionida: Chernetidae) , 2005, Journal of Insect Behavior.

[7]  G. Weyman,et al.  Do seasonal changes in numbers of aerially dispersing spiders reflect population density on the ground or variation in ballooning motivation? , 1995, Oecologia.

[8]  M. Sabelis,et al.  Synomone-induced suppression of take-off in the phytoseiid mite Phytoseiulus persimilis Athias-Henriot , 1994, Experimental & Applied Acarology.

[9]  F. Barth,et al.  Drop and swing dispersal behavior of a tropical wandering spider: experiments and numerical model , 1991, Journal of Comparative Physiology A.

[10]  M. Greenstone Meteorological determinants of spider ballooning: the roles of thermals vs. the vertical windspeed gradient in becoming airborne , 1990, Oecologia.

[11]  C. Richter Aerial dispersal in relation to habitat in eight wolf spider species (Pardosa, Araneae, Lycosidae) , 1970, Oecologia.

[12]  S. Wirth Phylogeny, Biology and character transformations of the Histiostomatidae (Acari, Astigmata) , 2004 .

[13]  M. Houck,et al.  Potential Role of Parasitism in the Evolution of Mutualism in Astigmatid Mites: Hemisarcoptes Cooremani as a Model , 2004, Experimental & Applied Acarology.

[14]  D. Bonte,et al.  Environmental and genetic background of tiptoe-initiating behaviour in the dwarfspider Erigone atra , 2003, Animal Behaviour.

[15]  J. W. Mertins,et al.  The ground skink, Scincella lateralis, an unusual host for phoretic deutonymphs of a uropodine mite, Fuscuropoda marginata, with a review of analogous mite-host interactions , 2003 .

[16]  D. Bajerlein,et al.  Two cases of hyperphoresy in mesostigmatic mites (Acari: Gamasida: Uropodidae, Macrochelidae) , 2003 .

[17]  G. Weyman,et al.  A review of the evolution and mechanisms of ballooning by spiders inhabiting arable farmland , 2002 .

[18]  Y. Marusik,et al.  DIVERSITY OF SPIDERS IN BOREAL AND ARCTIC ZONES , 2002 .

[19]  C. Topping,et al.  VALIDATION OF A SIMPLE METHOD FOR MONITORING AERIAL ACTIVITY OF SPIDERS , 2002 .

[20]  W. Nentwig,et al.  The Krakatau Islands (Indonesia) as a model-area for zoogeographical study, a Salticidae (Arachnida: Araneae) perspective , 2002 .

[21]  M. Shanahan,et al.  Colonization of an island volcano, Long Island, Papua New Guinea, and an emergent island, Motmot, in its caldera lake. III. Colonization by birds , 2001 .

[22]  J. Edwards,et al.  Colonization of an island volcano, Long Island, Papua New Guinea, and an emergent island, Motmot, in its caldera lake. VI. The pioneer arthropod community of Motmot , 2001 .

[23]  Yael Lubin,et al.  DISPERSAL OF STEGODYPHUS DUMICOLA (ARANEAE, ERESIDAE): THEY DO BALLOON AFTER ALL! , 2001 .

[24]  D. Bonte,et al.  Life history, habitat use and dispersal of a dune wolf spider (Pordosa monticola (Clerck, 1757) Lycosidae, Araneae) in the Flemish coastal dunes (Belgium) , 2001 .

[25]  P. Jepson,et al.  DIFFERENTIAL AERIAL DISPERSAL OF LINYPHIID SPIDERS FROM A GRASS AND A CEREAL FIELD , 1999 .

[26]  R. Suter,et al.  AN AERIAL LOTTERY: THE PHYSICS OF BALLOONING IN A CHAOTIC ATMOSPHERE , 1999 .

[27]  E. Duffey,et al.  Aerial dispersal in spiders , 1998 .

[28]  P. F. Bührnheim,et al.  Phoretic Pseudoscorpions Associated with Flying Insects in Brazilian Amazônia , 1998 .

[29]  M. Hoffmann,et al.  Resultaten van een onderzoek naar aëronautisch actieve spinnen in het duingebied van Oostduinkerke (West-Vlaanderen) , 1998 .

[30]  G. Blandenier Ballooning spiders caught by a suction trap in an agricultural landscape in Switzerland , 1998 .

[31]  C. Combes,et al.  Interactions Durables: Ecologie et Evolution du Parasitisme , 1997 .

[32]  M. Rigby Association of a juvenile phoretic uropodid mite with the beach hopper Traskorchestia traskiana (Stimpson, 1857) (Crustacea: Talitridae) , 1996 .

[33]  S. Toft Two functions of gossamer dispersal in spiders , 1995 .

[34]  J. Edwards,et al.  Spider Arrival and Primary Establishment on Terrain Depopulated by Volcanic Eruption at Mount St. Helens, Washington , 1995 .

[35]  G. Weyman LABORATORY STUDIES OF THE FACTORS STIMULATING BALLOONING BEHAVIOR B Y LINYPHIID SPIDERS (ARANEAE, LINYPHIIDAE) , 1995 .

[36]  R. Zann,et al.  Colonization of the Krakatau islands by vertebrates , 1992 .

[37]  D. W. Zeh,et al.  On the Function of Harlequin Beetle-Riding in the Pseudoscorpion, Cordylochernes scorpioides (Pseudoscorpionida: Chernetidae) , 1992 .

[38]  G. Evans Principles of Acarology , 1992 .

[39]  R. R. Eaton,et al.  Sampling Aerially Dispersing Arthropods: A High-Volume, Inexpensive, Automobile- and Aircraft-Borne System , 1991 .

[40]  B. OConnor,et al.  Ecological and Evolutionary Significance of Phoresy in the Astigmata , 1991 .

[41]  T. New,et al.  A pre-vegetation population of crickets subsisting on allochthonous aeolian debris on Anak Krakatau , 1988 .

[42]  P. E. Hunter,et al.  Associations of Mesostigmata with Other Arthropods , 1988 .

[43]  A. Decae Dispersal: Ballooning and Other Mechanisms , 1987 .

[44]  M. Greenstone,et al.  BALLOONING SPIDERS IN MISSOURI, USA , AND NEW SOUTH WALES, AUSTRALIA : FAMILY AND MASS DISTRIBUTION S , 1987 .

[45]  M. Sabelis,et al.  Long range dispersal and searching behaviour , 1985 .

[46]  F. Athias-Binche La phorésie chez les acariens uropodides (anactinotriches), une stratégie écologique originale , 1984 .

[47]  F. Coyle Aerial Dispersal by Mygalomorph Spiderlings (Araneae, Mygalomorphae) , 1983 .

[48]  R. Foelix,et al.  The biology of spiders. , 1987 .

[49]  E. Binns PHORESY AS MIGRATION ‐ SOME FUNCTIONAL ASPECTS OF PHORESY IN MITES , 1982 .

[50]  L. Vincent,et al.  Pseudopygmephorus atypoides Rack, new species (Acari Pygmephoridae) associated with the fossorial mygalomorph spider Atypoides riversi O. P.-Cambridge (Araneae : Antrodiaetidae) in California , 1982 .

[51]  R. Domrow A small lizard stifled by phoretic deutonymphal mites (Uropodina) , 1981 .

[52]  W. Schawaller Pseudoskorpione (Cheliferidae) phoretisch auf Käfern (Platypodidae) in Dominikanischem Bernstein (Stuttgarter Bernsteinsammlung: Pseudoscorpionidea und Coleoptera) , 1981 .

[53]  P. Greenwood Mating systems, philopatry and dispersal in birds and mammals , 1980, Animal Behaviour.

[54]  R. A. Norton Observations on phoresy by oribatid mites (Acari: Oribatei). , 1980 .

[55]  E. Binns Scutacarus baculitarsus Mahunka (Acarina: Scutacaridae) phoretic on the mushroom phorid fly Megaselia halterata (Wood) , 1980 .

[56]  C. W. Sabrosky,et al.  NEOGEOAEOLIAN HABITATS ON NEW LAVA FLOWS ON HAWAII ISLAND: AN ECOSYSTEM SUPPORTED BY WINDBORNE DEBRIS1 , 1979 .

[57]  William D. McEnroe,et al.  A Manual of Acarology , 1978 .

[58]  B. Croft,et al.  Laboratory Study of the Dispersal Behavior of Amblyseius fallacis (Acarina: Phytoseiidae) , 1976 .

[59]  H. Vugts Meteorological aspects of aeronautic behaviour of spiders , 1976 .

[60]  E. Lindquist ASSOCIATIONS BETWEEN MITES AND OTHER ARTHROPODS IN FOREST FLOOR HABITATS , 1975, The Canadian Entomologist.

[61]  F. A. Shvanderov The role of phoresy in the transference of Eriophyoidea. , 1975 .

[62]  R. Axtell,et al.  Phoresy redefined and examined in Macrocheles muscaedomesticae (Acarina:Macrochelidae) , 1971 .

[63]  M. Harvey,et al.  A manual of acarology. , 1971 .

[64]  J. Gressitt Book Notice: Pacific Insects Monograph 23: Subantarctic entomology, particularly of South Georgia and Heard Island , 1970 .

[65]  R. Mitchell An Analysis of Dispersal in Mites , 1970, The American Naturalist.

[66]  L. Nault,et al.  The dispersal of Aceria tulipae and three other grass-infesting Eriophyid mites in Ohio. , 1969 .

[67]  P. Weygoldt,et al.  The Biology of Pseudoscorpions , 1969 .

[68]  E. A. Cross,et al.  Phoretic Behavior of Four Species of Alkali Bee Mites as Influenced by Season and Host Sex , 1969 .

[69]  D. Stoddart Island Life , 1969, Nature.

[70]  W. Bristowe The comity of spiders , 1968 .

[71]  W. Howard Innate and Environmental Dispersal of Individual Vertebrates , 1960 .

[72]  E. Duffey Aerial Dispersal in a Known Spider Population , 1956 .

[73]  T. Savory The Comity of Spiders , 1942, Nature.

[74]  R. Hingston A naturalist in Himalaya , 2022 .