Imputations for High Missing Rate Data in Covariates Via Semi-supervised Learning Approach

[1]  Mikhail Belkin,et al.  Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..

[2]  J. Robins,et al.  Estimation of Regression Coefficients When Some Regressors are not Always Observed , 1994 .

[3]  J. Kalbfleisch,et al.  Block-Conditional Missing at Random Models for Missing Data , 2010, 1104.2400.

[4]  Zhongheng Zhang,et al.  Missing data imputation: focusing on single imputation. , 2016, Annals of translational medicine.

[5]  Peter Bühlmann,et al.  MissForest - non-parametric missing value imputation for mixed-type data , 2011, Bioinform..

[6]  Paul D. Allison,et al.  Handling Missing Data by Maximum Likelihood , 2012 .

[7]  Jae Kwang Kim,et al.  A Semiparametric Estimation of Mean Functionals With Nonignorable Missing Data , 2011 .

[8]  Yong Zhou,et al.  Efficient Quantile Regression Analysis With Missing Observations , 2015 .

[9]  Sixia Chen,et al.  Multiply robust imputation procedures for the treatment of item nonresponse in surveys , 2017 .

[10]  Ingunn Myrtveit,et al.  Analyzing Data Sets with Missing Data: An Empirical Evaluation of Imputation Methods and Likelihood-Based Methods , 2001, IEEE Trans. Software Eng..

[11]  Duncan David Nulty,et al.  The adequacy of response rates to online and paper surveys: what can be done? , 2008 .

[12]  K. Liang,et al.  On pseudolikelihood inference for semiparametric models with boundary problems , 2017, Biometrika.

[13]  Joseph G. Ibrahim,et al.  A Weighted Estimating Equation for Missing Covariate Data with Properties Similar to Maximum Likelihood , 1999 .

[14]  Xiaojin Zhu,et al.  Introduction to Semi-Supervised Learning , 2009, Synthesis Lectures on Artificial Intelligence and Machine Learning.

[15]  Roderick J. A. Little,et al.  Statistical Analysis with Missing Data , 1988 .

[16]  Balaji Rajagopalan,et al.  A KERNEL ESTIMATOR FOR DISCRETE DISTRIBUTIONS , 1995 .

[17]  C. Bollinger,et al.  Is Earnings Nonresponse Ignorable? , 2010, Review of Economics and Statistics.

[18]  Jun Shao,et al.  Model Averaging for Prediction With Fragmentary Data , 2018, Journal of Business & Economic Statistics.

[19]  Paul M. Thompson,et al.  Bi-level multi-source learning for heterogeneous block-wise missing data , 2014, NeuroImage.

[20]  Wei Liu,et al.  Regression Analysis with Individual-Specific Patterns of Missing Covariates , 2019, Journal of Business & Economic Statistics.

[21]  Russ B. Altman,et al.  Missing value estimation methods for DNA microarrays , 2001, Bioinform..

[22]  Xinhua Zhang,et al.  Hyperparameter Learning for Graph Based Semi-supervised Learning Algorithms , 2006, NIPS.

[23]  Larry A. Wasserman,et al.  Statistical Analysis of Semi-Supervised Regression , 2007, NIPS.

[24]  Chih-Ling Tsai,et al.  Covariance Regression Analysis , 2015 .

[25]  Paul M. Thompson,et al.  Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data , 2012, NeuroImage.

[26]  Hansheng Wang,et al.  Sample Correlation Coefficients Based on Survey Data Under Regression Imputation , 2002 .

[27]  Zoubin Ghahramani,et al.  Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions , 2003, ICML 2003.

[28]  Lu Wang,et al.  Estimation with missing data: beyond double robustness , 2013 .

[29]  Roderick J. A. Little,et al.  Statistical Analysis with Missing Data: Little/Statistical Analysis with Missing Data , 2002 .

[30]  Irène Gijbels,et al.  Local likelihood and local partial likelihood in hazard regression , 1997 .

[31]  J. Schafer,et al.  A comparison of inclusive and restrictive strategies in modern missing data procedures. , 2001, Psychological methods.