A Strengthened Entropy Power Inequality for Log-Concave Densities

We show that Shannon's entropy-power inequality admits a strengthened version in the case in which the densities are log-concave. In such a case, in fact, one can extend the Blachman-Stam argument to obtain a sharp inequality for the second derivative of Shannon's entropy functional with respect to the heat semigroup.

[1]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[2]  Assaf Naor,et al.  On the rate of convergence in the entropic central limit theorem , 2004 .

[3]  Giuseppe Toscani,et al.  Sur l'inégalité logarithmique de Sobolev , 1997 .

[4]  Nelson M. Blachman,et al.  The convolution inequality for entropy powers , 1965, IEEE Trans. Inf. Theory.

[5]  Mokshay M. Madiman,et al.  Generalized Entropy Power Inequalities and Monotonicity Properties of Information , 2006, IEEE Transactions on Information Theory.

[6]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[7]  Giuseppe Toscani,et al.  Lyapunov functionals for the heat equation and sharp inequalities , 2013 .

[8]  Olivier Rioul A Simple Proof of the Entropy-Power Inequality via Properties of Mutual Information , 2007, 2007 IEEE International Symposium on Information Theory.

[9]  Sergio Verdú,et al.  A simple proof of the entropy-power inequality , 2006, IEEE Transactions on Information Theory.

[10]  Cédric Villani,et al.  A short proof of the "Concavity of entropy power" , 2000, IEEE Trans. Inf. Theory.

[11]  A. Barron ENTROPY AND THE CENTRAL LIMIT THEOREM , 1986 .

[12]  K. Babenko,et al.  An inequality in the theory of Fourier integrals , 1961 .

[13]  A. J. Stam Some Inequalities Satisfied by the Quantities of Information of Fisher and Shannon , 1959, Inf. Control..

[14]  Amir Dembo,et al.  Simple proof of the concavity of the entropy power with respect to Gaussian noise , 1989, IEEE Trans. Inf. Theory.

[15]  A. Prékopa Logarithmic concave measures with applications to stochastic programming , 1971 .

[16]  Sergey G. Bobkov,et al.  On the problem of reversibility of the entropy power inequality , 2011, ArXiv.

[17]  Assaf Naor,et al.  Entropy jumps in the presence of a spectral gap , 2003 .

[18]  Giuseppe Toscani,et al.  ON CONVEX SOBOLEV INEQUALITIES AND THE RATE OF CONVERGENCE TO EQUILIBRIUM FOR FOKKER-PLANCK TYPE EQUATIONS , 2001 .

[19]  H. McKean Speed of approach to equilibrium for Kac's caricature of a Maxwellian gas , 1966 .

[20]  E. Carlen,et al.  Propagation of Localization Optimal Entropy Production and Convergence rates for the Central Limit Theorem , 2011, 1106.2256.

[21]  Liyao Wang,et al.  Beyond the Entropy Power Inequality, via Rearrangements , 2013, IEEE Transactions on Information Theory.

[22]  S. Bobkov,et al.  Reverse Brunn–Minkowski and reverse entropy power inequalities for convex measures , 2011, 1109.5287.

[23]  Zhen Zhang,et al.  On the maximum entropy of the sum of two dependent random variables , 1994, IEEE Trans. Inf. Theory.

[24]  A. Barron,et al.  Fisher information inequalities and the central limit theorem , 2001, math/0111020.

[25]  Giuseppe Toscani,et al.  The Concavity of Rényi Entropy Power , 2014, IEEE Transactions on Information Theory.

[26]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[27]  E. Lieb,et al.  Best Constants in Young's Inequality, Its Converse, and Its Generalization to More than Three Functions , 1976 .

[28]  Giuseppe Toscani,et al.  Heat Equation and Convolution Inequalities , 2013, 1308.6662.

[29]  Shlomo Shamai,et al.  Mutual information and minimum mean-square error in Gaussian channels , 2004, IEEE Transactions on Information Theory.

[30]  Giuseppe Toscani,et al.  Exponential convergence toward equilibrium for homogeneous Fokker–Planck‐type equations , 1998 .

[31]  Pierre-Louis Lions,et al.  A Strengthened Central Limit Theorem for Smooth Densities , 1995 .

[32]  Giuseppe Toscani,et al.  An information-theoretic proof of Nash's inequality , 2012, ArXiv.

[33]  Van Hoang Nguyen,et al.  Entropy jumps for isotropic log-concave random vectors and spectral gap , 2012, 1206.5098.

[34]  M. Kendall Theoretical Statistics , 1956, Nature.

[35]  Sergey G. Bobkov,et al.  Dimensional behaviour of entropy and information , 2011, ArXiv.

[36]  Max H. M. Costa,et al.  A new entropy power inequality , 1985, IEEE Trans. Inf. Theory.

[37]  Thierry Goudon,et al.  Fourier-Based Distances and Berry-Esseen Like Inequalities for Smooth Densities , 2002 .

[38]  Amir Dembo,et al.  Information theoretic inequalities , 1991, IEEE Trans. Inf. Theory.

[39]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[40]  Adrien Blanchet,et al.  Improved intermediate asymptotics for the heat equation , 2011, Appl. Math. Lett..

[41]  W. Chan,et al.  Unimodality, convexity, and applications , 1989 .