Parallel TREE code for two-component ultracold plasma analysis

The TREE method has been widely used for long-range interaction N-body problems. We have developed a parallel TREE code for two-component classical plasmas with open boundary conditions and highly non-uniform charge distributions. The program efficiently handles millions of particles evolved over long relaxation times requiring millions of time steps. Appropriate domain decomposition and dynamic data management were employed, and large-scale parallel processing was achieved using an intermediate level of granularity of domain decomposition and ghost TREE communication. Even though the computational load is not fully distributed in fine grains, high parallel efficiency was achieved for ultracold plasma systems of charged particles. As an application, we performed simulations of an ultracold neutral plasma with a half million particles and a half million time steps. For the long temporal trajectories of relaxation between heavy ions and light electrons, large configurations of ultracold plasmas can now be investigated, which was not possible in past studies.

[1]  S. G. Kuzmin,et al.  Numerical simulation of ultracold plasmas: how rapid intrinsic heating limits the development of correlation. , 2002, Physical review letters.

[2]  M. S. Warren,et al.  A parallel hashed Oct-Tree N-body algorithm , 1993, Supercomputing '93.

[3]  G. Kelbg Theorie des Quanten‐Plasmas , 1963 .

[4]  Zhiqiang Wang,et al.  A parallel algorithm for 3D dislocation dynamics , 2006, J. Comput. Phys..

[5]  L A Collins,et al.  Evolution of ultracold neutral plasmas. , 2002, Physical review letters.

[6]  Y C Chen,et al.  Using absorption imaging to study ion dynamics in an ultracold neutral plasma. , 2003, Physical review letters.

[7]  C. Deutsch Nodal expansion in a real matter plasma , 1977 .

[8]  Y C Chen,et al.  Electron screening and kinetic-energy oscillations in a strongly coupled plasma. , 2004, Physical review letters.

[9]  G. Kelbg Quantenstatistik der Gase mit Coulomb‐Wechselwirkung , 1963 .

[10]  Paul Gibbon,et al.  Many-body tree methods in physics , 1996 .

[11]  S. G. Kuzmin,et al.  Numerical simulation of ultracold plasmas , 2002 .

[12]  S. Rolston,et al.  Creation of an Ultracold Neutral Plasma , 1999, physics/9908051.

[13]  John Dubinski A parallel tree code , 1996 .

[14]  O. Goscinski,et al.  Effect of interchannel interaction on the neon KLL Auger transition rates , 1977 .

[15]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[16]  G. Kelbg Klassische statistische Mechanik der Teilchen-Mischungen mit sortenabhängigen weitreichenden zwischenmolekularen Wechselwirkungen , 1964 .

[17]  John K. Salmon,et al.  Parallel hierarchical N-body methods , 1992 .

[18]  P. Miocchi,et al.  An efficient parallel tree-code for the simulation of self-gravitating systems , 2001 .

[19]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[20]  U. Becciani,et al.  Are you ready to FLY in the universe? A multi-platform N-body tree code for parallel supercomputers , 2001 .