Fine mapping of a major quantitative trait locus, qLG-9, that controls seed longevity in rice (Oryza sativa L.)

[1]  Feng Liu,et al.  Identification of quantitative trait loci for seed storability in rice (Oryza sativa L.) , 2012 .

[2]  U. Scholz,et al.  Seed conservation in ex situ genebanks—genetic studies on longevity in barley , 2009, Euphytica.

[3]  M. Iordachescu,et al.  Trehalose biosynthesis in response to abiotic stresses. , 2008, Journal of integrative plant biology.

[4]  A. Xiong,et al.  Identification of quantitative trait loci for seed storability in rice (Oryza sativa L.) , 2008, Euphytica.

[5]  山口 琢也,et al.  低温土中出芽性に優れた在来品種「阿波赤米」の育種利用 , 2007 .

[6]  I. Grosse,et al.  A 1,000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics , 2007, Theoretical and Applied Genetics.

[7]  Q. Qian,et al.  QTL analysis of seed storability in rice , 2006 .

[8]  Y. Fukuta,et al.  Mapping of quantitative trait loci controlling seed longevity of rice (Oryza sativa L.) after various periods of seed storage , 2005 .

[9]  M. Yano,et al.  Identification and characterization of a QTL on chromosome 2 for cytosolic glutamine synthetase content and panicle number in rice , 2004, Theoretical and Applied Genetics.

[10]  M. Koornneef,et al.  Genetic differences in seed longevity of various Arabidopsis mutants , 2004 .

[11]  S. Lin,et al.  Fine linkage mapping enables dissection of closely linked quantitative trait loci for seed dormancy and heading in rice , 2003, Theoretical and Applied Genetics.

[12]  S. Song,et al.  Expression of a Bifunctional Fusion of the Escherichia coli Genes for Trehalose-6-Phosphate Synthase and Trehalose-6-Phosphate Phosphatase in Transgenic Rice Plants Increases Trehalose Accumulation and Abiotic Stress Tolerance without Stunting Growth1 , 2003, Plant Physiology.

[13]  T. G. Owens,et al.  Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[14]  S. Lin,et al.  Mapping quantitative trait loci controlling seed longevity in rice (Oryza sativa L.) , 2002, Theoretical and Applied Genetics.

[15]  M. Yamauchi,et al.  Rice seed vigor and seedling establishment in anaerobic soil , 1996 .

[16]  M. T. Jackson,et al.  Seed Longevity of Rice Cultivars and Strategies for their Conservation in Genebanks , 1996 .

[17]  S. Lin,et al.  A 300 kilobase interval genetic map of rice including 883 expressed sequences , 1994, Nature Genetics.

[18]  T. D. Hong,et al.  Desiccation Tolerance and Potential Longevity of Developing Seeds of Rice ( Oryza sativa L.) , 1994 .

[19]  F. Ausubel,et al.  A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. , 1993, The Plant journal : for cell and molecular biology.

[20]  T. Chang Findings from a 28-yr seed viability experiment , 1991 .

[21]  M. Daly,et al.  MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. , 1987, Genomics.

[22]  W. F. Thompson,et al.  Rapid isolation of high molecular weight plant DNA. , 1980, Nucleic acids research.

[23]  E. Roberts The Viability of Rice Seed in relation to Temperature, Moisture Content, and Gaseous Environment , 1961 .

[24]  U. Lohwasser,et al.  Genetic mapping within the wheat D genome reveals QTL for germination, seed vigour and longevity, and early seedling growth , 2009, Euphytica.

[25]  S. Lin,et al.  A high-density rice genetic linkage map with 2275 markers using a single F2 population. , 1998, Genetics.

[26]  D. Brandon,et al.  Breeding improved rice cultivars for temperate regions: a case study , 1994 .

[27]  T. D. Hong,et al.  The Low-moisture-content Limit to the Negative Logarithmic Relation Between Seed Longevity and Moisture Content in Three Subspecies of Rice , 1992 .

[28]  D. V. Seshu,et al.  Seed vigor in rice , 1988 .