Direct measurement of coating thermal noise in optical resonators

The best measurements of space and time currently possible (e.g. gravitational wave detectors and optical reference cavities) rely on optical resonators, and are ultimately limited by thermally induced fluctuations in the reflective coatings which form the resonator. We present measurements of coating thermal noise in the audio band and show that for a standard ion beam sputtered coating, the power spectrum of the noise does not have the expected power-law behavior.

[1]  High-Reflection Coatings for Gravitational-Wave Detectors: State of The Art and Future Developments , 2017, 1712.05701.

[2]  D. Martynov,et al.  Audio-band coating thermal noise measurement for Advanced LIGO with a multimode optical resonator , 2016, 1609.05595.

[3]  Y. Wang,et al.  Exploring the sensitivity of next generation gravitational wave detectors , 2016, 1607.08697.

[4]  R. Bork,et al.  Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy , 2016, 1604.00439.

[5]  V. Pierro,et al.  Material loss angles from direct measurements of broadband thermal noise , 2015, 1501.06371.

[6]  M. Evans,et al.  Multimaterial coatings with reduced thermal noise , 2014, 1411.3234.

[7]  Lisa Barsotti,et al.  Prospects for doubling the range of Advanced LIGO , 2014, 1410.5882.

[8]  The Ligo Scientific Collaboration Advanced LIGO , 2014, 1411.4547.

[9]  F. Piergiovanni,et al.  A gentle nodal suspension for measurements of the acoustic attenuation in materials , 2009, 2014 IEEE Metrology for Aerospace (MetroAeroSpace).

[10]  Wei Zhang,et al.  Tenfold reduction of Brownian noise in high-reflectivity optical coatings , 2013, Nature Photonics.

[11]  R. Adhikari,et al.  Brownian thermal noise in multilayer coated mirrors , 2012, 1207.6145.

[12]  H. V. D. Zant,et al.  Mechanical systems in the quantum regime , 2011, 1106.2060.

[13]  W. Marsden I and J , 2012 .

[14]  Lei Chen,et al.  A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity , 2011, Nature Photonics.

[15]  Gabriela Gonzalez,et al.  The LIGO Scientific Collaboration , 2015 .

[16]  Benno Willke,et al.  The Einstein Telescope: a third-generation gravitational wave observatory , 2010 .

[17]  L. Pinard,et al.  A study of coating mechanical and optical losses in view of reducing mirror thermal noise in gravitational wave detectors , 2010 .

[18]  T. Hayler,et al.  Observation of a kilogram-scale oscillator near its quantum ground state , 2009 .

[19]  M. Fejer,et al.  Thermo-optic noise in coated mirrors for high-precision optical measurements , 2008, 0807.4774.

[20]  J. Ye,et al.  Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1x10(-15). , 2006, Optics letters.

[21]  M. Fejer,et al.  Titania-doped tantala/silica coatings for gravitational-wave detection , 2006, gr-qc/0610004.

[22]  Martin M. Fejer,et al.  Experimental measurements of mechanical dissipation associated with dielectric coatings formed using SiO2, Ta2O5 and Al2O3 , 2006 .

[23]  M. Fejer,et al.  Mechanical loss in tantala/silica dielectric mirror coatings , 2003, gr-qc/0302093.

[24]  M. Fejer,et al.  Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings , 2001, gr-qc/0109073.

[25]  J Hough,et al.  Excess mechanical loss associated with dielectric mirror coatings on test masses in interferometric gravitational wave detectors , 2002 .