Planck2018 results

The European Space Agency's Planck satellite, which was dedicated to studying the early Universe and its subsequent evolution, was launched on 14 May 2009. It scanned the microwave and submillimetre sky continuously between 12 August 2009 and 23 October 2013, producing deep, high-resolution, all-sky maps in nine frequency bands from 30 to 857GHz. This paper presents the cosmological legacy of Planck, which currently provides our strongest constraints on the parameters of the standard cosmological model and some of the tightest limits available on deviations from that model. The 6-parameter LCDM model continues to provide an excellent fit to the cosmic microwave background data at high and low redshift, describing the cosmological information in over a billion map pixels with just six parameters. With 18 peaks in the temperature and polarization angular power spectra constrained well, Planck measures five of the six parameters to better than 1% (simultaneously), with the best-determined parameter (theta_*) now known to 0.03%. We describe the multi-component sky as seen by Planck, the success of the LCDM model, and the connection to lower-redshift probes of structure formation. We also give a comprehensive summary of the major changes introduced in this 2018 release. The Planck data, alone and in combination with other probes, provide stringent constraints on our models of the early Universe and the large-scale structure within which all astrophysical objects form and evolve. We discuss some lessons learned from the Planck mission, and highlight areas ripe for further experimental advances.

C. A. Oxborrow | R. B. Barreiro | H. Kurki-Suonio | P. Lilje | C. Baccigalupi | K. Benabed | M. Kunz | G. Morgante | M. Douspis | J. Delouis | M. Frailis | A. Zacchei | J. Lesgourgues | A. Melchiorri | V. Pettorino | R. G'enova-Santos | J. Rubino-Mart'in | M. White | T. Ensslin | E. Hivon | A. Banday | F. Hansen | M. Reinecke | A. Lasenby | A. Challinor | B. Wandelt | F. Bouchet | S. Matarrese | J. Bock | J. Borrill | P. Bernardis | A. Jaffe | J. Bond | B. Crill | K. Ganga | W. Jones | F. Piacentini | G. Efstathiou | J. Diego | A. Moss | S. Mitra | H. Peiris | S. White | J. McEwen | Y. Fantaye | M. Ashdown | C. Lawrence | G. Helou | T. Kisner | H. Eriksen | F. Boulanger | H. Nørgaard-Nielsen | C. Dickinson | J. Leahy | T. Pearson | J. Aumont | J. Bernard | M. Bersanelli | P. Bielewicz | M. Bucher | C. Burigana | R. C. Butler | H. Chiang | L. Colombo | F. Cuttaia | G. Zotti | J. Delabrouille | F. D'esert | S. Donzelli | O. Dor'e | X. Dupac | E. Falgarone | F. Finelli | E. Franceschi | S. Galeotta | J. Gonz'alez-Nuevo | K. M. G'orski | S. Gratton | A. Gruppuso | D. Herranz | E. Keihanen | R. Keskitalo | L. Knox | G. Lagache | J. Lamarre | M. Jeune | M. Liguori | M. L'opez-Caniego | P. Lubin | J. Mac'ias-P'erez | D. Maino | N. Mandolesi | A. Marcos-Caballero | M. Maris | P. Martin | E. Mart'inez-Gonz'alez | P. Meinhold | A. Mennella | M. Migliaccio | M. Miville-Deschênes | A. Moneti | P. Natoli | L. Pagano | D. Paoletti | B. Partridge | G. Patanchon | F. Perrotta | G. Polenta | J. Puget | J. Rachen | M. Remazeilles | A. Renzi | G. Rocha | C. Rosset | G. Roudier | M. Sandri | D. Scott | E. Shellard | L. Spencer | R. Sunyaev | A. Suur-Uski | J. Tauber | D. Tavagnacco | L. Terenzi | L. Toffolatti | M. Tomasi | J. Valiviita | B. Tent | P. Vielva | F. Villa | N. Vittorio | I. Wehus | A. Zonca | L. Vibert | E. Calabrese | F. Elsner | S. Galli | J. Gudmundsson | J. Hamann | M. Lattanzi | M. Millea | M. Savelainen | N. Bartolo | R. Battye | J. Cardoso | C. Combet | E. D. Valentino | A. Ducout | J. Fergusson | M. Gerbino | T. Ghosh | Z. Huang | F. Levrier | G. Maggio | A. Mangilli | L. Salvati | T. Trombetti | L. Montier | K. Kiiveri | V. Lindholm | M. Langer | N. Mauri | C. Sirignano | G. Sirri | M. Tenti | M. Peel | M. Munchmeyer | P. Meerburg | F. Arroja | M. Ballardini | S. Basak | B. Casaponsa | D. Contreras | R. Fernández-Cobos | A. Frolov | A. Karakci | J. Kim | N. Krachmalnicoff | Y.-Z. Ma | D. Molinari | S. Mottet | B. Ruiz-Granados | M. Shiraishi | J. Carron | F. Forastieri | A. Lewis | M. Lilley | L. Polastri | Planck Collaboration Y. Akrami | W. Handley | F. Lévrier | J. Bock | D. Scott | S. White | D. Scott | S. Mitra | D. Scott | G. Rocha | J. Bond | C. Lawrence | C. Rosset | A.-S. Suur-Uski | A. Lewis

[1]  P. T. de Zeeuw,et al.  Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole , 2020, Astronomy & Astrophysics.

[2]  Y. N. Liu,et al.  Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Multifrequency Behaviour of High Energy Cosmic Sources - XIII — PoS(MULTIF2019).

[3]  S. Rabien,et al.  The GRAVITY Young Stellar Object survey. I. Probing the disks of Herbig Ae/Be stars in terrestrial orbits , 2019, 1911.00611.

[4]  N. Palanque-Delabrouille,et al.  Matter power spectrum: from Ly α forest to CMB scales , 2019, Monthly Notices of the Royal Astronomical Society.

[5]  A. Challinor,et al.  Cosmological constraints from Planck galaxy clusters with CMB lensing mass bias calibration , 2019, Monthly Notices of the Royal Astronomical Society.

[6]  A. Riess,et al.  Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM , 2019, The Astrophysical Journal.

[7]  C. A. Oxborrow,et al.  Gravitational lensing by large scale structure , 2019 .

[8]  J. Peacock,et al.  Wide-area tomography of CMB lensing and the growth of cosmological density fluctuations , 2018, Monthly Notices of the Royal Astronomical Society.

[9]  D. Gerdes,et al.  Withdrawn as Duplicate: Survey geometry and the internal consistency of recent cosmic shear measurements , 2018, Monthly Notices of the Royal Astronomical Society: Letters.

[10]  Stefano Casertano,et al.  Milky Way Cepheid Standards for Measuring Cosmic Distances and Application to Gaia DR2: Implications for the Hubble Constant , 2018, The Astrophysical Journal.

[11]  P. J. Richards,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[12]  M. Millea,et al.  Cosmic microwave background constraints in light of priors over reionization histories , 2018, Astronomy & Astrophysics.

[13]  S. Ho,et al.  Probing gravity with a joint analysis of galaxy and CMB lensing and SDSS spectroscopy , 2018, Monthly Notices of the Royal Astronomical Society.

[14]  Alan E. E. Rogers,et al.  An absorption profile centred at 78 megahertz in the sky-averaged spectrum , 2018, Nature.

[15]  S. Ho,et al.  Scale-dependent galaxy bias, CMB lensing-galaxy cross-correlation, and neutrino masses , 2018, Physical Review D.

[16]  C. A. Oxborrow,et al.  Planck intermediate results , 2018, Astronomy & Astrophysics.

[17]  H. Rix,et al.  Quantitative Constraints on the Reionization History from the IGM Damping Wing Signature in Two Quasars at z > 7 , 2018, The Astrophysical Journal.

[18]  D. Scott,et al.  The Spectrum of the Universe , 2018, Applied spectroscopy.

[19]  G. Lagache,et al.  Star formation history from the cosmic infrared background anisotropies , 2018, Astronomy & Astrophysics.

[20]  C. Pichon,et al.  The impact of baryons on the matter power spectrum from the Horizon-AGN cosmological hydrodynamical simulation , 2018, Monthly Notices of the Royal Astronomical Society.

[21]  C. Reichardt,et al.  Constraining Gravity at Large Scales with the 2MASS Photometric Redshift Catalog and Planck Lensing , 2018, The Astrophysical Journal.

[22]  A. Myers,et al.  The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: measurement of the growth rate of structure from the anisotropic correlation function between redshift 0.8 and 2.2 , 2018, Monthly Notices of the Royal Astronomical Society.

[23]  David O. Jones,et al.  New Parallaxes of Galactic Cepheids from Spatially Scanning the Hubble Space Telescope: Implications for the Hubble Constant , 2018, 1801.01120.

[24]  M. Lattanzi,et al.  Status of Neutrino Properties and Future Prospects—Cosmological and Astrophysical Constraints , 2017, Front. Phys..

[25]  K. Koyama,et al.  Self-accelerating universe in scalar-tensor theories after GW170817 , 2017, 1712.06556.

[26]  H. Rix,et al.  An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5 , 2017, Nature.

[27]  L. Amendola,et al.  Fate of Large-Scale Structure in Modified Gravity After GW170817 and GRB170817A. , 2017, Physical review letters.

[28]  C. Reichardt,et al.  Imprints of gravitational lensing in the Planck cosmic microwave background data at the location of WISE×SCOS galaxies , 2017, Physical Review D.

[29]  T. Treu,et al.  The Universe Is Reionizing at z ∼ 7: Bayesian Inference of the IGM Neutral Fraction Using Lyα Emission from Galaxies , 2017, 1709.05356.

[30]  B. Yanny,et al.  Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing , 2017, Physical Review D.

[31]  R. Nichol,et al.  Dark Energy Survey Year 1 results: Cosmological constraints from cosmic shear , 2017, Physical Review D.

[32]  Karl Glazebrook,et al.  KiDS-450 + 2dFLenS: Cosmological parameter constraints from weak gravitational lensing tomography and overlapping redshift-space galaxy clustering , 2017, 1707.06627.

[33]  C. A. Oxborrow,et al.  Planck intermediate results , 2017, Astronomy & Astrophysics.

[34]  Edwin Valentijn,et al.  KiDS+GAMA : cosmology constraints from a joint analysis of cosmic shear, galaxy-galaxy lensing, and angular clustering , 2017, 1706.05004.

[35]  K. Ganga,et al.  Cosmological constraints from a joint analysis of cosmic microwave background and spectroscopic tracers of the large-scale structure , 2017, Monthly Notices of the Royal Astronomical Society.

[36]  D. Spergel,et al.  Planck Sunyaev–Zel’dovich cluster mass calibration using Hyper Suprime-Cam weak lensing , 2017, 1706.00434.

[37]  A. Myers,et al.  The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: First measurement of baryon acoustic oscillations between redshift 0.8 and 2.2 , 2017, 1705.06373.

[38]  Shaun A. Thomas,et al.  Cosmology and Fundamental Physics with the Euclid Satellite , 2012, Living Reviews in Relativity.

[39]  C. A. Oxborrow,et al.  Planck 2013 results. , 2018 .

[40]  C. A. Oxborrow,et al.  Planck intermediate results. LV. The Planck Multi-frequency Catalogue of Non-thermal Sources , 2018 .

[41]  C. A. Oxborrow,et al.  Detection of velocity dispersion from the kinetic Sunyaev-Zeldovich effect , 2018 .

[42]  A. Abbott Hungary rewards highly cited scientists with bonus grants , 2017, Nature.

[43]  C. Steidel,et al.  One Percent Determination of the Primordial Deuterium Abundance , 2017, 1710.11129.

[44]  R. Bouwens,et al.  The Dearth of z ∼ 10 Galaxies in All HST Legacy Fields—The Rapid Evolution of the Galaxy Population in the First 500 Myr , 2017, 1710.11131.

[45]  P. Ferreira,et al.  Strong Constraints on Cosmological Gravity from GW170817 and GRB 170817A. , 2017, Physical review letters.

[46]  F. Vernizzi,et al.  Dark Energy after GW170817 and GRB170817A. , 2017, Physical review letters.

[47]  B. Jain,et al.  Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories. , 2017, Physical review letters.

[48]  J. Ezquiaga,et al.  Dark Energy After GW170817: Dead Ends and the Road Ahead. , 2017, Physical review letters.

[49]  Texas Tech University,et al.  Multi-messenger observations of a binary neutron star merger , 2017, 1710.05833.

[50]  J. K. Blackburn,et al.  A gravitational-wave standard siren measurement of the Hubble constant , 2017, Nature.

[51]  D. Schneider,et al.  Baryon acoustic oscillations from the complete SDSS-III Ly$\alpha$-quasar cross-correlation function at $z=2.4$ , 2017, 1708.02225.

[52]  B. Garilli,et al.  The VIMOS Public Extragalactic Redshift Survey (VIPERS): The growth of structure at $0.5 < z < 1.2$ from redshift-space distortions in the clustering of the PDR-2 final sample , 2016, 1612.05645.

[53]  Adrian T. Lee,et al.  Measurements of the Temperature and E-mode Polarization of the CMB from 500 Square Degrees of SPTpol Data , 2017, 1707.09353.

[54]  Michael Boylan-Kolchin,et al.  Small-Scale Challenges to the ΛCDM Paradigm , 2017, 1707.04256.

[55]  S. Jha,et al.  Measuring the Hubble constant with Type Ia supernovae as near-infrared standard candles , 2017, 1707.00715.

[56]  Adrian T. Lee,et al.  A Comparison of Cosmological Parameters Determined from CMB Temperature Power Spectra from the South Pole Telescope and the Planck Satellite , 2017, 1706.10286.

[57]  David N. Spergel,et al.  Two-season Atacama Cosmology Telescope polarimeter lensing power spectrum , 2017 .

[58]  K. Ganga,et al.  Cosmological constraints from a joint analysis of cosmic microwave background and large-scale structure , 2017 .

[59]  P. Schneider,et al.  KiDS-450: The tomographic weak lensing power spectrum and constraints on cosmological parameters , 2017, 1706.02892.

[60]  A. Gilbert,et al.  A Measurement of the Cosmic Microwave Background B-mode Polarization Power Spectrum at Subdegree Scales from Two Years of polarbear Data , 2017, 1705.02907.

[61]  Adrian T. Lee,et al.  A Comparison of Maps and Power Spectra Determined from South Pole Telescope and Planck Data , 2017, 1704.00884.

[62]  M. Sereno,et al.  PSZ2LenS. Weak lensing analysis of the Planck clusters in the CFHTLenS and in the RCSLenS , 2017, 1703.06886.

[63]  Konrad Kuijken,et al.  KiDS-450: tomographic cross-correlation of galaxy shear with Planck lensing , 2017, 1703.03383.

[64]  D. Schneider,et al.  Measurement of BAO correlations at $z=2.3$ with SDSS DR12 \lya-Forests , 2017, 1702.00176.

[65]  D. Scolnic,et al.  Testing ΛCDM at the lowest redshifts with SN Ia and galaxy velocities , 2016, 1611.09862.

[66]  Peter A. R. Ade,et al.  The Atacama Cosmology Telescope: two-season ACTPol spectra and parameters , 2016, Journal of Cosmology and Astroparticle Physics.

[67]  U. Seljak,et al.  Cosmological constraints from thermal Sunyaev-Zeldovich power spectrum revisited , 2016, 1609.01850.

[68]  W. M. Wood-Vasey,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample , 2016, 1607.03155.

[69]  G. Meylan,et al.  H0LiCOW - V. New COSMOGRAIL time delays of HE 0435-1223: H0 to 3.8 per cent precision from strong lensing in a flat ΛCDM model , 2016, 1607.01790.

[70]  J. Brownstein,et al.  Cross-correlating Planck CMB lensing with SDSS: Lensing-lensing and galaxy-lensing cross-correlations , 2016, 1606.08841.

[71]  J. Aumont,et al.  Planck intermediate results L. Evidence of spatial variation of the polarized thermal dust spectral energy distribution and implications for CMB B-mode analysis , 2016, 1606.07335.

[72]  P. Schneider,et al.  KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing , 2016, 1606.05338.

[73]  I. McGreer,et al.  Lyα emission-line reconstruction for high-z QSOs , 2016, 1605.09388.

[74]  A. Slosar,et al.  Measurement of a Cosmographic Distance Ratio with Galaxy and Cosmic Microwave Background Lensing. , 2016, Physical review letters.

[75]  C. A. Oxborrow,et al.  Planck intermediate results. LIII. Detection of velocity dispersion from the kinetic Sunyaev-Zeldovich effect , 2017 .

[76]  A. Slosar,et al.  Measurement of baryon acoustic oscillation correlations at z = 2 . 3 with SDSS DR 12 Ly α-Forests , 2017 .

[77]  J. Aumont,et al.  Planck intermediate results LII. Planet flux densities , 2016, 1612.07151.

[78]  Peter G. Martin,et al.  Modelling and simulation of large-scale polarized dust emission over the southern Galactic cap using the GASS HI data , 2016, 1611.02418.

[79]  J. Lesgourgues,et al.  Physical effects involved in the measurements of neutrino masses with future cosmological data , 2016, 1610.09852.

[80]  C. A. Oxborrow,et al.  Planck 2015 results - VII. High Frequency Instrument data processing: Time-ordered information and beams , 2015, 1502.01586.

[81]  E. Hivon,et al.  QuickPol: Fast calculation of effective beam matrices for CMB polarization , 2016, 1608.08833.

[82]  J. Bartlett,et al.  Calibrating the Planck Cluster Mass Scale with CLASH , 2016, 1608.05356.

[83]  B. Keating,et al.  Planck Lensing and Cosmic Infrared Background Cross-correlation with Fermi-LAT: Tracing Dark Matter Signals in the Gamma-Ray Background , 2016, 1608.04351.

[84]  C. A. Oxborrow,et al.  Planck intermediate results. LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters , 2016, 1608.02487.

[85]  David N. Spergel,et al.  First detection of cosmic microwave background lensing and Lyman-α forest bispectrum , 2016 .

[86]  S. Pastor,et al.  Relic neutrino decoupling with flavour oscillations revisited , 2016, 1606.06986.

[87]  G. W. Pratt,et al.  Planck intermediate results - XLV. Radio spectra of northern extragalactic radio sources , 2016, 1606.05120.

[88]  Z. Haiman,et al.  Are we witnessing the epoch of reionisation at $z=7.1$ from the spectrum of J1120+0641? , 2016, 1606.00441.

[89]  C. A. Oxborrow,et al.  Planck intermediate results - XLVII. Planck constraints on reionization history , 2016, 1605.03507.

[90]  C. A. Oxborrow,et al.  Planck intermediate results. XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth , 2016, 1605.02985.

[91]  Brad E. Tucker,et al.  A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT , 2016, 1604.01424.

[92]  T. Kitching,et al.  CFHTLenS and RCSLenS Cross-Correlation with Planck Lensing Detected in Fourier and Configuration Space , 2016, 1603.07723.

[93]  D. Scott,et al.  The information content of cosmic microwave background anisotropies , 2016, 1603.03550.

[94]  D. Spergel,et al.  Kinematic Sunyaev-Zel'dovich Effect with Projected Fields: A Novel Probe of the Baryon Distribution with Planck, WMAP, and WISE Data. , 2016, Physical review letters.

[95]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[96]  F. Schmidt,et al.  Dark Energy vs. Modified Gravity , 2016, 1601.06133.

[97]  R. W. Ogburn,et al.  Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band. , 2016, Physical review letters.

[98]  R. Nichol,et al.  Cross-correlation of gravitational lensing from DES Science Verification data with SPT and Planck lensing , 2015, 1512.04535.

[99]  M. McQuinn The Evolution of the Intergalactic Medium , 2015, 1512.00086.

[100]  Naoyuki Tamura,et al.  The Subaru FMOS galaxy redshift survey (FastSound). IV. New constraint on gravity theory from redshift space distortions at z ∼ 1.4 , 2015, 1511.08083.

[101]  Matthew Colless,et al.  The 6dF Galaxy Survey: bulk flows on 50-70 h(-1) Mpc scales , 2015, 1511.06930.

[102]  Shirley Ho,et al.  Constraining gravity at the largest scales through CMB lensing and galaxy velocities , 2015, 1511.04457.

[103]  A. Myers,et al.  Updated measurements of the dark matter halo masses of obscured quasars with improved WISE and Planck data , 2015, 1511.04469.

[104]  G. W. Pratt,et al.  Planck 2015 results Special feature Planck 2015 results XII . Full focal plane simulations , 2016 .

[105]  S. Hilbert,et al.  Cosmology and astrophysics from relaxed galaxy clusters - IV. Robustly calibrating hydrostatic masses with weak lensing , 2015, 1509.02162.

[106]  J. E. Carlstrom,et al.  CMB lensing tomography with the DES Science Verification galaxies , 2015, Monthly Notices of the Royal Astronomical Society.

[107]  N. Okabe,et al.  LoCuSS: weak-lensing mass calibration of galaxy clusters , 2015, 1507.04493.

[108]  G. W. Pratt,et al.  Planck 2015 results - XI. CMB power spectra, likelihoods, and robustness of parameters , 2015, 1507.02704.

[109]  C. A. Oxborrow,et al.  Planck 2015 results. XXV. Diffuse low-frequency Galactic foregrounds , 2015, 1506.06660.

[110]  C. A. Oxborrow,et al.  Planck intermediate results. XXXVIII. E- and B-modes of dust polarization from the magnetized filamentary structure of the interstellar medium , 2015, 1505.02779.

[111]  C. A. Oxborrow,et al.  Planck intermediate results. XXXVII. Evidence of unbound gas from the kinetic Sunyaev-Zeldovich effect , 2015, 1504.03339.

[112]  C. A. Oxborrow,et al.  Planck 2015 results. IX. Diffuse component separation: CMB maps , 2015, 1502.05956.

[113]  G. W. Pratt,et al.  Planck intermediate results. XXXV. Probing the role of the magnetic field in the formation of structure in molecular clouds , 2015, 1502.04123.

[114]  G. W. Pratt,et al.  Planck 2015 results Special feature Planck 2015 results VIII . High Frequency Instrument data processing : Calibration and maps , 2016 .

[115]  C. A. Oxborrow,et al.  Planck 2015 results. XV. Gravitational lensing , 2015, 1502.01591.

[116]  C. A. Oxborrow,et al.  Planck 2015 results Special feature Planck 2015 results XIV . Dark energy and modified gravity , 2016 .

[117]  G. W. Pratt,et al.  Planck 2015 results - X. Diffuse component separation: Foreground maps , 2015, 1502.01588.

[118]  R. B. Barreiro,et al.  Planck 2015 results - XXII. A map of the thermal Sunyaev-Zeldovich effect , 2015, 1502.01596.

[119]  G. W. Pratt,et al.  Planck intermediate results - XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes , 2014, 1409.5738.

[120]  Andrei Mesinger,et al.  Understanding the Epoch of Cosmic Reionization , 2016 .

[121]  A. Mesinger Understanding the epoch of cosmic reionization : challenges and progress , 2016 .

[122]  J. Bolton,et al.  Reionisation and High-Redshift Galaxies: The View from Quasar Absorption Lines , 2015, Publications of the Astronomical Society of Australia.

[123]  Saul Perlmutter,et al.  Blind analysis: Hide results to seek the truth , 2015, Nature.

[124]  L. Lombriser,et al.  Breaking a dark degeneracy with gravitational waves , 2015, 1509.08458.

[125]  B. Altieri,et al.  Planck’s dusty GEMS: The brightest gravitationally lensed galaxies discovered with the Planck all-sky survey , 2015 .

[126]  J. Peek,et al.  Neutral Hydrogen Structures Trace Dust Polarization Angle: Implications for Cosmic Microwave Background Foregrounds. , 2015, Physical review letters.

[127]  G. W. Pratt,et al.  Planck intermediate results - XXXIX. The Planck list of high-redshift source candidates , 2015, 1508.04171.

[128]  G. W. Pratt,et al.  Planck2015 results: XXVI. The SecondPlanckCatalogue of Compact Sources , 2015, 1507.02058.

[129]  R. Patterson,et al.  Prospects for Measurement of the Neutrino Mass Hierarchy , 2015, 1506.07917.

[130]  J. Lesgourgues,et al.  Neutrino masses and cosmology with Lyman-alpha forest power spectrum , 2015, 1506.05976.

[131]  Jia Liu,et al.  Cross-correlation of Planck CMB lensing and CFHTLenS galaxy weak lensing maps , 2015, 1504.05598.

[132]  R. B. Barreiro,et al.  Planck intermediate results XXVII. High-redshift infrared galaxy overdensity candidates and lensed sources discovered by Planck and confirmed by Herschel-SPIRE , 2015, 1503.08773.

[133]  R. Bouwens,et al.  REIONIZATION AFTER PLANCK: THE DERIVED GROWTH OF THE COSMIC IONIZING EMISSIVITY NOW MATCHES THE GROWTH OF THE GALAXY UV LUMINOSITY DENSITY , 2015, 1503.08228.

[134]  K. Olive,et al.  The effects of He I λ10830 on helium abundance determinations , 2015, 1503.08146.

[135]  P. A. R. Ade,et al.  MEASUREMENTS OF SUB-DEGREE B-MODE POLARIZATION IN THE COSMIC MICROWAVE BACKGROUND FROM 100 SQUARE DEGREES OF SPTPOL DATA , 2015, 1503.02315.

[136]  G. Holder,et al.  Cross-Correlation of CFHTLenS Galaxy Number Density and Planck CMB Lensing , 2015, 1502.03405.

[137]  G. W. Pratt,et al.  Planck 2015. XX. Constraints on inflation , 2015, 1502.02114.

[138]  C. A. Oxborrow,et al.  Planck 2015 results. XVIII. Background geometry & topology , 2015, 1502.01593.

[139]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy &amp; Astrophysics.

[140]  C. A. Oxborrow,et al.  Planck 2015 results Special feature Planck 2015 results XXVII . The second Planck catalogue of Sunyaev-Zeldovich sources , 2016 .

[141]  G. W. Pratt,et al.  XXIV. Cosmology from Sunyaev-Zeldovich cluster counts , 2015, 1502.01597.

[142]  A. G. Vieregg,et al.  BICEP2/KECK ARRAY V: MEASUREMENTS OF B-MODE POLARIZATION AT DEGREE ANGULAR SCALES AND 150 GHz BY THE KECK ARRAY , 2015, 1502.00643.

[143]  Adam D. Myers,et al.  Cosmological implications of baryon acoustic oscillation measurements , 2014, 1411.1074.

[144]  M. Regis,et al.  EVIDENCE OF CROSS-CORRELATION BETWEEN THE CMB LENSING AND THE γ-RAY SKY , 2014, 1410.4997.

[145]  S. Dye,et al.  CROSS-CORRELATION BETWEEN THE CMB LENSING POTENTIAL MEASURED BY PLANCK AND HIGH-z SUBMILLIMETER GALAXIES DETECTED BY THE HERSCHEL-ATLAS SURVEY , 2014, 1410.4502.

[146]  G. W. Pratt,et al.  Planck intermediate results XXXII. The relative orientation between the magnetic field and structures traced by interstellar dust , 2014, 1409.6728.

[147]  W. Percival,et al.  The clustering of the SDSS main galaxy sample – II. Mock galaxy catalogues and a measurement of the growth of structure from redshift space distortions at z = 0.15 , 2014, 1409.3238.

[148]  Ashley J. Ross,et al.  The clustering of the SDSS DR7 Main Galaxy Sample I: a 4 per cent distance measure at z=0.15 , 2014, 1409.3242.

[149]  A. Hopkins,et al.  Inferring the redshift distribution of the cosmic infrared background , 2014, 1407.0031.

[150]  T. Prabhu,et al.  H0 from ten well-measured time delay lenses , 2014, 1404.2920.

[151]  P. A. R. Ade,et al.  A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND GRAVITATIONAL LENSING POTENTIAL FROM 100 SQUARE DEGREES OF SPTPOL DATA , 2014, 1412.4760.

[152]  A. Myers,et al.  Weighing obscured and unobscured quasar hosts with the cosmic microwave background , 2014, 1411.0527.

[153]  C. A. Oxborrow,et al.  Planck 2013 results. XXXI. Consistency of the Planck data , 2014, 1508.03375.

[154]  James G. Bartlett,et al.  Measuring cluster masses with CMB lensing: a statistical approach , 2014, 1408.5633.

[155]  M. Lueker,et al.  A MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES FROM THE 2500 SQUARE-DEGREE SPT-SZ SURVEY , 2014, 1408.3161.

[156]  Mark Trodden,et al.  Beyond the Cosmological Standard Model , 2014, 1407.0059.

[157]  Sergey E. Koposov,et al.  Balancing mass and momentum in the Local Group , 2014, 1405.3662.

[158]  G. W. Pratt,et al.  Planck intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust , 2014, 1405.0871.

[159]  Bonn,et al.  Robust weak-lensing mass calibration of Planck galaxy clusters , 2014, 1402.2670.

[160]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: improved distance measurements to z = 1 with reconstruction of the baryonic acoustic feature , 2014, 1401.0358.

[161]  Takahiro Nishimichi,et al.  Simultaneous constraints on the growth of structure and cosmic expansion from the multipole power spectra of the SDSS DR7 LRG sample , 2013, 1310.2820.

[162]  M. Kamionkowski,et al.  Effect of aberration on partial-sky measurements of the cosmic microwave background temperature power spectrum , 2013, 1309.2285.

[163]  C. A. Oxborrow,et al.  Planck 2013 results. XXX. Cosmic infrared background measurements and implications for star formation , 2013, 1309.0382.

[164]  G. W. Pratt,et al.  Planck 2013 results. XXII. Constraints on inflation , 2013, 1303.5082.

[165]  R. B. Barreiro,et al.  Planck 2013 results. V. LFI calibration , 2013, 1303.5066.

[166]  G. W. Pratt,et al.  Planck 2013 results. XVII. Gravitational lensing by large-scale structure , 2013, 1303.5077.

[167]  C. A. Oxborrow,et al.  Planck2013 results. VI. High Frequency Instrument data processing , 2013, Astronomy &amp; Astrophysics.

[168]  C. A. Oxborrow,et al.  Planck 2015 results. I. Overview of products and scientific results , 2015 .

[169]  G. W. Pratt,et al.  Planck2013 results. XXIX. ThePlanckcatalogue of Sunyaev-Zeldovich sources , 2013, Astronomy &amp; Astrophysics.

[170]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[171]  C. A. Oxborrow,et al.  Planck 2015 results: XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation , 2015, 1509.06555.

[172]  C. A. Oxborrow,et al.  Planck 2013 results - VIII. HFI photometric calibration and mapmaking , 2013, 1303.5069.

[173]  G. W. Pratt,et al.  Planck 2015 results - XVII. Constraints on primordial non-Gaussianity , 2014 .

[174]  G. W. Pratt,et al.  Planck 2013 results Special feature Planck 2013 results . XXV . Searches for cosmic strings and other topological defects , 2014 .

[175]  G. W. Pratt,et al.  Planck 2013 results. XVIII. The gravitational lensing-infrared background correlation , 2013, 1303.5078.

[176]  C. A. Oxborrow,et al.  Planck2013 results. XII. Diffuse component separation , 2013, Astronomy &amp; Astrophysics.

[177]  David N. Spergel,et al.  The Atacama Cosmology Telescope: temperature and gravitational lensing power spectrum measurements from three seasons of data , 2013, 1301.1037.

[178]  R. B. Barreiro,et al.  Low Frequency Instrument data processing , 2014 .

[179]  A. Hopkins,et al.  Galaxy And Mass Assembly (GAMA): improved cosmic growth measurements using multiple tracers of large-scale structure , 2013, 1309.5556.

[180]  M. Lueker,et al.  A DIRECT MEASUREMENT OF THE LINEAR BIAS OF MID-INFRARED-SELECTED QUASARS AT z ≈ 1 USING COSMIC MICROWAVE BACKGROUND LENSING , 2013, 1307.1706.

[181]  C. Burgess,et al.  String inflation after Planck 2013 , 2013, 1306.3512.

[182]  H. Aussel,et al.  The redshift evolution of the distribution of star formation among dark matter halos as seen in the infrared , 2013, 1304.3936.

[183]  F. Atrio-Barandela On the Statistical Significance of the Bulk Flow Measured by the PLANCK Satellite , 2013, 1303.6614.

[184]  C. A. Oxborrow,et al.  Planck 2013 results. XXVII. Doppler boosting of the CMB: Eppur si muove , 2013, 1303.5087.

[185]  G. W. Pratt,et al.  Planck intermediate results - XIII. Constraints on peculiar velocities , 2013, 1303.5090.

[186]  R. B. Barreiro,et al.  Planck 2013 results. IV. Low Frequency Instrument beams and window functions , 2013, 1303.5065.

[187]  R. B. Barreiro,et al.  Planck 2015 results. II. Low Frequency Instrument data processings , 2013, 1502.01583.

[188]  G. W. Pratt,et al.  Astronomy & Astrophysics manuscript no. planck˙isw c ○ ESO 2013 , 2013 .

[189]  M. Lueker,et al.  A COSMIC MICROWAVE BACKGROUND LENSING MASS MAP AND ITS CORRELATION WITH THE COSMIC INFRARED BACKGROUND , 2013, 1303.5048.

[190]  J. Lesgourgues,et al.  Neutrino Cosmology by Julien Lesgourgues , 2013 .

[191]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.

[192]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS , 2012, 1212.5225.

[193]  P. P. van der Werf,et al.  H-ATLAS: THE COSMIC ABUNDANCE OF DUST FROM THE FAR-INFRARED BACKGROUND POWER SPECTRUM , 2012, 1212.2211.

[194]  Jacques Delabrouille,et al.  A needlet ILC analysis of WMAP 9-year polarization data: CMB polarization power spectra , 2012, 1204.0292.

[195]  Adam G. Riess,et al.  Observational probes of cosmic acceleration , 2012, 1201.2434.

[196]  C. A. Oxborrow,et al.  Planck intermediate results - XI. The gas content of dark matter halos: the Sunyaev-Zeldovich-stellar mass relation for locally brightest galaxies , 2012, 1212.4131.

[197]  Douglas Scott,et al.  A UNIFIED EMPIRICAL MODEL FOR INFRARED GALAXY COUNTS BASED ON THE OBSERVED PHYSICAL EVOLUTION OF DISTANT GALAXIES , 2012, 1208.6512.

[198]  H. Nguyen,et al.  HerMES: COSMIC INFRARED BACKGROUND ANISOTROPIES AND THE CLUSTERING OF DUSTY STAR-FORMING GALAXIES , 2012, 1208.5049.

[199]  R. B. Barreiro,et al.  Planck intermediate results - X. Physics of the hot gas in the Coma cluster , 2012, 1208.3611.

[200]  Wendy L. Freedman,et al.  CARNEGIE HUBBLE PROGRAM: A MID-INFRARED CALIBRATION OF THE HUBBLE CONSTANT , 2012, 1208.3281.

[201]  Takahiro Nishimichi,et al.  REVISING THE HALOFIT MODEL FOR THE NONLINEAR MATTER POWER SPECTRUM , 2012, 1208.2701.

[202]  W. M. Wood-Vasey,et al.  THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.

[203]  R. B. Barreiro,et al.  Planck intermediate results VII. Statistical properties of infrared and radio extragalactic sources from the Planck Early Release Compact Source Catalogue at frequencies between 100 and 857 GHz , 2012, 1207.4706.

[204]  G. W. Pratt,et al.  Planck intermediate results: V. Pressure profiles of galaxy clusters from the Sunyaev-Zeldovich effect , 2012, 1207.4061.

[205]  R. B. Barreiro,et al.  Planck intermediate results - IV. The XMM-Newton validation programme for new Planck galaxy clusters , 2012, 1205.3376.

[206]  Will Saunders,et al.  The 6dF Galaxy Survey: z \approx 0 measurement of the growth rate and sigma_8 , 2012, 1204.4725.

[207]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: joint measurements of the expansion and growth history at z < 1 , 2012, 1204.3674.

[208]  R. B. Barreiro,et al.  Planck intermediate results - III. The relation between galaxy cluster mass and Sunyaev-Zeldovich signal , 2012, 1204.2743.

[209]  D. Finkbeiner,et al.  Searching for dark matter in the CMB: A compact parametrization of energy injection from new physics , 2011, 1109.6322.

[210]  G. W. Pratt,et al.  Planck intermediate results , 2012, Astronomy & Astrophysics.

[211]  Jean-Francois Cardoso,et al.  Foreground component separation with generalised ILC , 2011, 1103.1166.

[212]  R. Sunyaev,et al.  The evolution of CMB spectral distortions in the early Universe , 2011, 1109.6552.

[213]  Z. Haiman,et al.  Improved models for cosmic infrared background anisotropies: new constraints on the infrared galaxy population , 2011, 1109.1522.

[214]  Matthew Colless,et al.  The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant , 2011, 1106.3366.

[215]  P. Vielva,et al.  Multiresolution internal template cleaning: an application to the Wilkinson Microwave Anisotropy Probe 7-yr polarization data , 2011, 1106.2016.

[216]  G. W. Pratt,et al.  Planck early results. XXVI. Detection with Planck and confirmation by XMM-Newton of PLCK G266.6–27.3, an exceptionally X-ray luminous and massive galaxy cluster at z ~ 1 , 2011, 1106.1376.

[217]  Rick Chartrand,et al.  Numerical Differentiation of Noisy, Nonsmooth Data , 2011 .

[218]  Stefano Casertano,et al.  A 3% SOLUTION: DETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE AND WIDE FIELD CAMERA 3 , 2011, 1103.2976.

[219]  R. B. Barreiro,et al.  Planck early results. XV. Spectral energy distributions and radio continuum spectra of northern extragalactic radio sources , 2011, 1101.2047.

[220]  R. B. Barreiro,et al.  Planck early results - X. Statistical analysis of Sunyaev-Zeldovich scaling relations for X-ray galaxy clusters , 2011, 1101.2043.

[221]  R. B. Barreiro,et al.  Planck early results Special feature Planck early results . XI . Calibration of the local galaxy cluster Sunyaev-Zeldovich scaling relations , 2011 .

[222]  R. B. Barreiro,et al.  Planck early results. XVIII. The power spectrum of cosmic infrared background anisotropies , 2011, 1101.2028.

[223]  R. B. Barreiro,et al.  Planckearly results. VII. The Early Release Compact Source Catalogue , 2011, Astronomy &amp; Astrophysics.

[224]  G. W. Pratt,et al.  Planck early results Special feature Planck early results . VIII . The all-sky early Sunyaev-Zeldovich cluster sample , 2011 .

[225]  C. B. Netterfield,et al.  Planck early results - I. The Planck mission , 2011, 1101.2022.

[226]  R. B. Barreiro,et al.  Planck early results. XIII. Statistical properties of extragalactic radio sources in the Planck Early Release Compact Source Catalogue , 2011, 1101.2044.

[227]  R. B. Barreiro,et al.  Planck early results. XVI. The Planck view of nearby galaxies , 2011, 1101.2045.

[228]  R. B. Barreiro,et al.  Planckearly results. XII. Cluster Sunyaev-Zeldovich optical scaling relations , 2011, Astronomy &amp; Astrophysics.

[229]  R. B. Barreiro,et al.  Planck early results. XIV. ERCSC validation and extreme radio sources , 2011, 1101.1721.

[230]  D. Elbaz,et al.  Submillimetre galaxies reside in dark matter haloes with masses greater than 3 × 1011 solar masses , 2011, Nature.

[231]  M. Halpern,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP ) OBSERVATIONS: ARE THERE COSMIC MICROWAVE BACKGROUND ANOMALIES? , 2010, 1001.4758.

[232]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2011 .

[233]  James J. Bock,et al.  Planck Pre-Launch Status: The Planck Mission , 2010 .

[234]  B. Jain,et al.  Cosmological Tests of Gravity , 2010, 1004.3294.

[235]  Jayaram N. Chengalur,et al.  Thick gas discs in faint dwarf galaxies , 2010, 1002.4474.

[236]  A. Lewis,et al.  Weak lensing of the CMB , 2009, 0911.0612.

[237]  Alexander S. Szalay,et al.  Cosmological constraints from the clustering of the Sloan Digital Sky Survey DR7 luminous red galaxies (vol 404, pg 60, 2010) , 2009, 0907.1659.

[238]  W. Dehnen,et al.  Local kinematics and the local standard of rest , 2009, 0912.3693.

[239]  D. J. Fixsen,et al.  THE TEMPERATURE OF THE COSMIC MICROWAVE BACKGROUND , 2009, 0911.1955.

[240]  Andrew R. Liddle,et al.  The Primordial Density Perturbation , 2009 .

[241]  James J. Bock,et al.  BLAST: CORRELATIONS IN THE COSMIC FAR-INFRARED BACKGROUND AT 250, 350, AND 500 μm REVEAL CLUSTERING OF STAR-FORMING GALAXIES , 2009, 0904.1200.

[242]  R. B. Partridge,et al.  Finding the Big Bang , 2009 .

[243]  D. Kocevski,et al.  A Measurement of Large-Scale Peculiar Velocities of Clusters of Galaxies: Results and Cosmological Implications , 2008, 0809.3734.

[244]  J. Zibin,et al.  Gauging the cosmic microwave background , 2008, 0808.2047.

[245]  E. Leitch,et al.  SECOND AND THIRD SEASON QUaD COSMIC MICROWAVE BACKGROUND TEMPERATURE AND POLARIZATION POWER SPECTRA , 2008, 0805.1944.

[246]  R. B. Barreiro,et al.  Component separation methods for the PLANCK mission , 2008, 0805.0269.

[247]  Edward J. Wollack,et al.  Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, & Basic Results , 2008, 0803.0732.

[248]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[249]  A. Melchiorri,et al.  Testing cosmology with cosmic sound waves , 2007, 0711.4119.

[250]  H. K. Eriksen,et al.  Joint Bayesian Component Separation and CMB Power Spectrum Estimation , 2007, 0709.1058.

[251]  T. Rodet,et al.  Correlated Anisotropies in the Cosmic Far-Infrared Background Detected by the Multiband Imaging Photometer for Spitzer: Constraint on the Bias , 2007, 0707.2443.

[252]  D. Kocevski,et al.  Our Peculiar Motion Away from the Local Void , 2007, 0705.4139.

[253]  M. Kunz,et al.  Dark energy versus modified gravity. , 2006, Physical review letters.

[254]  G. Smoot,et al.  Power spectrum analysis of far-IR background fluctuations in 160 μm maps from the multiband imaging photometer for Spitzer , 2006, astro-ph/0604512.

[255]  D. Eisenstein,et al.  On the Robustness of the Acoustic Scale in the Low-Redshift Clustering of Matter , 2006, astro-ph/0604361.

[256]  J. Bartlett,et al.  Archeops in-flight performance, data processing, and map making , 2006, Astronomy &amp; Astrophysics.

[257]  S. Furlanetto,et al.  Cosmology at low frequencies: The 21 cm transition and the high-redshift Universe , 2006, astro-ph/0608032.

[258]  G. Efstathiou Hybrid estimation of cosmic microwave background polarization power spectra , 2006 .

[259]  Edward J. Wollack,et al.  Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Temperature Analysis , 2006, astro-ph/0603451.

[260]  Edward J. Wollack,et al.  Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.

[261]  G. Rieke,et al.  The Cosmic Infrared Background Resolved by Spitzer. Contributions of Mid-Infrared Galaxies to the Far-Infrared Background. , 2006, astro-ph/0603208.

[262]  A. Lewis,et al.  Weak gravitational lensing of the CMB , 2006, astro-ph/0601594.

[263]  G. Efstathiou Hybrid Estimation of CMB Polarization Power Spectra , 2006, astro-ph/0601107.

[264]  A. Melchiorri,et al.  A Measurement of the Angular Power Spectrum of the CMB Temperature Anisotropy from the 2003 Flight of BOOMERANG , 2005, astro-ph/0507494.

[265]  J.,et al.  The Dipole Observed in the COBE DMR Four-Year Data , 2006 .

[266]  V. Mukhanov Physical Foundations of Cosmology , 2005 .

[267]  Aaron Roodman,et al.  Blind Analysis in Nuclear and Particle Physics , 2005 .

[268]  A. Melchiorri,et al.  Indication for primordial anisotropies in the neutrino background from the Wilkinson microwave anisotropy probe and the Sloan digital sky survey. , 2005, Physical Review Letters.

[269]  N. Padmanabhan,et al.  Detecting dark matter annihilation with CMB polarization: Signatures and experimental prospects , 2005, astro-ph/0503486.

[270]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[271]  L. Knox,et al.  Effect of Hot Baryons on the Weak-Lensing Shear Power Spectrum , 2004, astro-ph/0409198.

[272]  Daniel J. Eisenstein Martin White Theoretical uncertainty in baryon oscillations , 2004, astro-ph/0407539.

[273]  M. White Baryons and weak lensing power spectra , 2004, astro-ph/0405593.

[274]  R. Nichol,et al.  The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey , 2003, astro-ph/0310725.

[275]  M. Kamionkowski,et al.  Particle decays during the cosmic dark ages , 2003, astro-ph/0310473.

[276]  J. Bond,et al.  Polarization Observations with the Cosmic Background Imager , 2001, Science.

[277]  J. Richard Bond,et al.  Cosmic microwave background snapshots: pre-WMAP and post-WMAP , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[278]  M. Halpern,et al.  First Year Wilkinson Microwave Anisotropy Probe Observations: Dark Energy Induced Correlation with Radio Sources , 2003, The Astrophysical Journal.

[279]  M. Roncadelli Searching for dark matter , 2003, astro-ph/0307115.

[280]  M. Zaldarriaga,et al.  The Far-Infrared Background Correlation with Cosmic Microwave Background Lensing , 2003 .

[281]  M. Halpern,et al.  SUBMITTED TO The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 11/12/01 FIRST YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: INTERPRETATION OF THE TT AND TE ANGULAR POWER SPECTRUM PEAKS , 2022 .

[282]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.

[283]  B. Jain,et al.  Last stand before WMAP: Cosmological parameters from lensing, CMB, and galaxy clustering , 2002, astro-ph/0212417.

[284]  M. Kamionkowski,et al.  Aspects of the cosmic microwave background dipole , 2002, astro-ph/0210165.

[285]  U. Seljak,et al.  Analyzing weak lensing of the cosmic microwave background using the likelihood function , 2002, astro-ph/0209489.

[286]  Elizabeth Waldram,et al.  First results from the Very Small Array — III. The cosmic microwave background power spectrum , 2002, astro-ph/0205380.

[287]  M. Bersanelli,et al.  Anisotropies of the Cosmic Microwave Background , 2002, astro-ph/0209215.

[288]  J. Carlstrom,et al.  Cosmology with the Sunyaev-Zel'dovich Effect , 2002, astro-ph/0208192.

[289]  Wayne Hu,et al.  Mass Reconstruction with Cosmic Microwave Background Polarization , 2002 .

[290]  Max Tegmark,et al.  Separating the early universe from the late universe: Cosmological parameter estimation beyond the black box , 2002, astro-ph/0207047.

[291]  J. Bond,et al.  The Anisotropy of the Microwave Background to l = 3500: Mosaic Observations with the Cosmic Background Imager , 2002, astro-ph/0205388.

[292]  G. Miele,et al.  A precision calculation of the effective number of cosmological neutrinos , 2001, astro-ph/0111408.

[293]  J. Puchalla,et al.  The QMAP and MAT/TOCO Experiments for Measuring Anisotropy in the Cosmic Microwave Background , 2001, astro-ph/0108030.

[294]  R. Durrer,et al.  Acoustic Peaks and Dips in the Cosmic Microwave Background Power Spectrum: Observational Data and Cosmological Constraints , 2001, astro-ph/0111594.

[295]  Wayne Hu,et al.  Mass Reconstruction with Cosmic Microwave Background Polarization , 2001, astro-ph/0111606.

[296]  A. Melchiorri,et al.  Multiple Peaks in the Angular Power Spectrum of the Cosmic Microwave Background: Significance and Consequences for Cosmology , 2001, astro-ph/0105296.

[297]  Caltech,et al.  PUBLISHED IN THE ASTROPHYSICAL JOURNAL, 568, 38 Preprint typeset using L ATEX style emulateapj v. 14/09/00 DASI FIRST RESULTS: A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND ANGULAR , 2002 .

[298]  A. Melchiorri,et al.  A Measurement by BOOMERANG of Multiple Peaks in the Angular Power Spectrum of the Cosmic Microwave Background , 2001, astro-ph/0104460.

[299]  C. Will The Confrontation between General Relativity and Experiment , 2001, Living reviews in relativity.

[300]  Princeton University,et al.  Probing Early Structure Formation with Far-Infrared Background Correlations , 2000, astro-ph/0009151.

[301]  James J. Bock,et al.  Constraints on Cosmological Parameters from MAXIMA-1 , 2000 .

[302]  H. Matsuhara,et al.  ISO deep far-infrared survey in the "Lockman Hole" II. Power spectrum analysis: evidence of a stro , 2000, astro-ph/0006444.

[303]  G. Lagache,et al.  Implications of the cosmic infrared background for light production and the star formation history in the Universe , 2000, astro-ph/0005554.

[304]  V. V. Hristov,et al.  MAXIMA-1: A Measurement of the Cosmic Microwave Background Anisotropy on Angular Scales of 10'-5° , 2000, astro-ph/0005123.

[305]  A. Melchiorri,et al.  A flat Universe from high-resolution maps of the cosmic microwave background radiation , 2000, Nature.

[306]  M. Roos,et al.  How flat is the Universe , 2000, astro-ph/0003040.

[307]  L. Page,et al.  Characterizing the peak in the cosmic microwave background angular power spectrum , 2000, Physical review letters.

[308]  G. Puget Detection of the extra-Galactic background fluctuations at 170 mu m , 1999, astro-ph/9910255.

[309]  S. Courteau,et al.  The Solar Motion Relative to the Local Group , 1999, astro-ph/9903298.

[310]  J. Peacock,et al.  Baryonic signatures in Large-Scale Structure , 1998, astro-ph/9812214.

[311]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[312]  A. G. Alexei,et al.  OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT , 1998 .

[313]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[314]  Wayne Hu,et al.  Structure Formation with Generalized Dark Matter , 1998, astro-ph/9801234.

[315]  Wayne Hu,et al.  Baryonic Features in the Matter Transfer Function , 1997, astro-ph/9709112.

[316]  E. L. Wright,et al.  The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background. IV. Cosmological Implications , 1997, astro-ph/9806129.

[317]  Matias Zaldarriaga,et al.  Cosmic Microwave Background Polarization as a Direct Test of Inflation , 1997, astro-ph/9705182.

[318]  A. Hamilton Linear redshift distortions: A Review , 1997, astro-ph/9708102.

[319]  W. White A CMB polarization primer , 1997, astro-ph/9706147.

[320]  M. Kamionkowski,et al.  Statistics of cosmic microwave background polarization , 1996, astro-ph/9611125.

[321]  U. Seljak,et al.  An all sky analysis of polarization in the microwave background , 1996, astro-ph/9609170.

[322]  Uros Seljak,et al.  Measuring Polarization in the Cosmic Microwave Background , 1996, astro-ph/9608131.

[323]  Wayne Hu,et al.  Distinguishing Causal Seeds from Inflation , 1996, astro-ph/9605193.

[324]  J. Binney,et al.  Mass models of the Milky Way , 1996, astro-ph/9612059.

[325]  E. L. Wright,et al.  The Cosmic Microwave Background Spectrum from the Full COBE FIRAS Data Set , 1996, astro-ph/9605054.

[326]  W. B. Burton,et al.  TENTATIVE DETECTION OF A COSMIC FAR-INFRARED BACKGROUND WITH COBE , 1996 .

[327]  J. Peacock,et al.  Non-linear evolution of cosmological power spectra , 1996, astro-ph/9603031.

[328]  White,et al.  A New Test of Inflation. , 1996, Physical review letters.

[329]  M. White,et al.  Acoustic Signatures in the Cosmic Microwave Background , 1996, astro-ph/9602019.

[330]  E. L. Wright,et al.  Four-Year COBE DMR Cosmic Microwave Background Observations: Maps and Basic Results , 1996, astro-ph/9601067.

[331]  M. White,et al.  Cold dark matter models with a cosmological constant , 1995, astro-ph/9512102.

[332]  U. Seljak Gravitational Lensing Effect on Cosmic Microwave Background Anisotropies: A Power Spectrum Approach , 1995, astro-ph/9505109.

[333]  R. B. Partridge,et al.  3 K: The Cosmic Microwave Background Radiation: Cosmology , 1995 .

[334]  Crittenden,et al.  Doppler peaks from cosmic texture. , 1995, Physical review letters.

[335]  White,et al.  Effect of physical assumptions on the calculation of microwave background anisotropies. , 1995, Physical review. D, Particles and fields.

[336]  Douglas Scott,et al.  From Microwave Anisotropies to Cosmology , 1995, Science.

[337]  L. Krauss,et al.  The cosmological constant is back , 1995, astro-ph/9504003.

[338]  Paul J. Steinhardt,et al.  The observational case for a low-density Universe with a non-zero cosmological constant , 1995, Nature.

[339]  N. Turok,et al.  Microwave anisotropies from cosmic defects , 1993, Nature.

[340]  L. Krauss CMB anisotropies two years after COBE: observations, theory and the future , 1994 .

[341]  A. Banday,et al.  Dipole Anisotropy in the COBE Differential Microwave Radiometers First-Year Sky Maps , 1993 .

[342]  J. Peacock,et al.  Power spectrum analysis of three-dimensional redshift surveys , 1993, astro-ph/9304022.

[343]  G. Hinshaw,et al.  Structure in the COBE differential microwave radiometer first-year maps , 1992 .

[344]  J. Bond,et al.  COBE Background radiation anisotropies and large scale structure in the universe , 1992 .

[345]  Turner,et al.  Tilted Universe and other remnants of the preinflationary Universe. , 1991, Physical review. D, Particles and fields.

[346]  S. Maddox,et al.  The cosmological constant and cold dark matter , 1990, Nature.

[347]  David Burstein,et al.  Spectroscopy and photometry of elliptical galaxies. V - Galaxy streaming toward the new supergalactic center , 1988 .

[348]  V. Rubin,et al.  Large-scale motions in the universe : a Vatican study week , 1988 .

[349]  J. Silk,et al.  Scale-invariant density perturbations, anisotropy of the cosmic microwave background, and large-scale peculiar velocity field , 1985 .

[350]  P. Peebles Tests of Cosmological Models Constrained by Inflation , 1984 .

[351]  C. G. T. Haslam,et al.  A 408 MHz all-sky continuum survey. II. The atlas of contour maps. , 1982 .

[352]  R. Rifkin Information content. , 1981, Circulation.

[353]  Y. Zel’dovich,et al.  Fluctuations of the microwave background radiation in the adiabatic and entropic theories of galaxy formation , 1978 .

[354]  A. Sandage,et al.  The Local Group: the solar motion relative to its centroid. , 1977 .

[355]  Y. Zel’dovich,et al.  The velocity of clusters of galaxies relative to the microwave background. The possibility of its measurement , 1980 .

[356]  Y. Zeldovich,et al.  The Observations of relic radiation as a test of the nature of X-Ray radiation from the clusters of galaxies , 1972 .

[357]  Y. Zeldovich,et al.  Small-scale fluctuations of relic radiation , 1970, Astrophysics and Space Science.

[358]  P. Peebles,et al.  Primeval Adiabatic Perturbation in an Expanding Universe , 1970 .

[359]  G. Dautcourt,et al.  The Cosmic Blackbody Radiation , 1968, 1968.

[360]  R. Sachs,et al.  Perturbations of a Cosmological Model and Angular Variations of the Microwave Background , 1967 .

[361]  P. J. E. Peebles,et al.  Cosmic Black-Body Radiation , 1965 .

[362]  A. Penzias,et al.  A Measurement of excess antenna temperature at 4080-Mc/s , 1965 .