Planck2018 results
暂无分享,去创建一个
C. A. Oxborrow | R. B. Barreiro | H. Kurki-Suonio | P. Lilje | C. Baccigalupi | K. Benabed | M. Kunz | G. Morgante | M. Douspis | J. Delouis | M. Frailis | A. Zacchei | J. Lesgourgues | A. Melchiorri | V. Pettorino | R. G'enova-Santos | J. Rubino-Mart'in | M. White | T. Ensslin | E. Hivon | A. Banday | F. Hansen | M. Reinecke | A. Lasenby | A. Challinor | B. Wandelt | F. Bouchet | S. Matarrese | J. Bock | J. Borrill | P. Bernardis | A. Jaffe | J. Bond | B. Crill | K. Ganga | W. Jones | F. Piacentini | G. Efstathiou | J. Diego | A. Moss | S. Mitra | H. Peiris | S. White | J. McEwen | Y. Fantaye | M. Ashdown | C. Lawrence | G. Helou | T. Kisner | H. Eriksen | F. Boulanger | H. Nørgaard-Nielsen | C. Dickinson | J. Leahy | T. Pearson | J. Aumont | J. Bernard | M. Bersanelli | P. Bielewicz | M. Bucher | C. Burigana | R. C. Butler | H. Chiang | L. Colombo | F. Cuttaia | G. Zotti | J. Delabrouille | F. D'esert | S. Donzelli | O. Dor'e | X. Dupac | E. Falgarone | F. Finelli | E. Franceschi | S. Galeotta | J. Gonz'alez-Nuevo | K. M. G'orski | S. Gratton | A. Gruppuso | D. Herranz | E. Keihanen | R. Keskitalo | L. Knox | G. Lagache | J. Lamarre | M. Jeune | M. Liguori | M. L'opez-Caniego | P. Lubin | J. Mac'ias-P'erez | D. Maino | N. Mandolesi | A. Marcos-Caballero | M. Maris | P. Martin | E. Mart'inez-Gonz'alez | P. Meinhold | A. Mennella | M. Migliaccio | M. Miville-Deschênes | A. Moneti | P. Natoli | L. Pagano | D. Paoletti | B. Partridge | G. Patanchon | F. Perrotta | G. Polenta | J. Puget | J. Rachen | M. Remazeilles | A. Renzi | G. Rocha | C. Rosset | G. Roudier | M. Sandri | D. Scott | E. Shellard | L. Spencer | R. Sunyaev | A. Suur-Uski | J. Tauber | D. Tavagnacco | L. Terenzi | L. Toffolatti | M. Tomasi | J. Valiviita | B. Tent | P. Vielva | F. Villa | N. Vittorio | I. Wehus | A. Zonca | L. Vibert | E. Calabrese | F. Elsner | S. Galli | J. Gudmundsson | J. Hamann | M. Lattanzi | M. Millea | M. Savelainen | N. Bartolo | R. Battye | J. Cardoso | C. Combet | E. D. Valentino | A. Ducout | J. Fergusson | M. Gerbino | T. Ghosh | Z. Huang | F. Levrier | G. Maggio | A. Mangilli | L. Salvati | T. Trombetti | L. Montier | K. Kiiveri | V. Lindholm | M. Langer | N. Mauri | C. Sirignano | G. Sirri | M. Tenti | M. Peel | M. Munchmeyer | P. Meerburg | F. Arroja | M. Ballardini | S. Basak | B. Casaponsa | D. Contreras | R. Fernández-Cobos | A. Frolov | A. Karakci | J. Kim | N. Krachmalnicoff | Y.-Z. Ma | D. Molinari | S. Mottet | B. Ruiz-Granados | M. Shiraishi | J. Carron | F. Forastieri | A. Lewis | M. Lilley | L. Polastri | Planck Collaboration Y. Akrami | W. Handley | F. Lévrier | J. Bock | D. Scott | S. White | D. Scott | S. Mitra | D. Scott | G. Rocha | J. Bond | C. Lawrence | C. Rosset | A.-S. Suur-Uski | A. Lewis
[1] P. T. de Zeeuw,et al. Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole , 2020, Astronomy & Astrophysics.
[2] Y. N. Liu,et al. Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Multifrequency Behaviour of High Energy Cosmic Sources - XIII — PoS(MULTIF2019).
[3] S. Rabien,et al. The GRAVITY Young Stellar Object survey. I. Probing the disks of Herbig Ae/Be stars in terrestrial orbits , 2019, 1911.00611.
[4] N. Palanque-Delabrouille,et al. Matter power spectrum: from Ly α forest to CMB scales , 2019, Monthly Notices of the Royal Astronomical Society.
[5] A. Challinor,et al. Cosmological constraints from Planck galaxy clusters with CMB lensing mass bias calibration , 2019, Monthly Notices of the Royal Astronomical Society.
[6] A. Riess,et al. Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM , 2019, The Astrophysical Journal.
[7] C. A. Oxborrow,et al. Gravitational lensing by large scale structure , 2019 .
[8] J. Peacock,et al. Wide-area tomography of CMB lensing and the growth of cosmological density fluctuations , 2018, Monthly Notices of the Royal Astronomical Society.
[9] D. Gerdes,et al. Withdrawn as Duplicate: Survey geometry and the internal consistency of recent cosmic shear measurements , 2018, Monthly Notices of the Royal Astronomical Society: Letters.
[10] Stefano Casertano,et al. Milky Way Cepheid Standards for Measuring Cosmic Distances and Application to Gaia DR2: Implications for the Hubble Constant , 2018, The Astrophysical Journal.
[11] P. J. Richards,et al. Gaia Data Release 2 , 2018, Astronomy & Astrophysics.
[12] M. Millea,et al. Cosmic microwave background constraints in light of priors over reionization histories , 2018, Astronomy & Astrophysics.
[13] S. Ho,et al. Probing gravity with a joint analysis of galaxy and CMB lensing and SDSS spectroscopy , 2018, Monthly Notices of the Royal Astronomical Society.
[14] Alan E. E. Rogers,et al. An absorption profile centred at 78 megahertz in the sky-averaged spectrum , 2018, Nature.
[15] S. Ho,et al. Scale-dependent galaxy bias, CMB lensing-galaxy cross-correlation, and neutrino masses , 2018, Physical Review D.
[16] C. A. Oxborrow,et al. Planck intermediate results , 2018, Astronomy & Astrophysics.
[17] H. Rix,et al. Quantitative Constraints on the Reionization History from the IGM Damping Wing Signature in Two Quasars at z > 7 , 2018, The Astrophysical Journal.
[18] D. Scott,et al. The Spectrum of the Universe , 2018, Applied spectroscopy.
[19] G. Lagache,et al. Star formation history from the cosmic infrared background anisotropies , 2018, Astronomy & Astrophysics.
[20] C. Pichon,et al. The impact of baryons on the matter power spectrum from the Horizon-AGN cosmological hydrodynamical simulation , 2018, Monthly Notices of the Royal Astronomical Society.
[21] C. Reichardt,et al. Constraining Gravity at Large Scales with the 2MASS Photometric Redshift Catalog and Planck Lensing , 2018, The Astrophysical Journal.
[22] A. Myers,et al. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: measurement of the growth rate of structure from the anisotropic correlation function between redshift 0.8 and 2.2 , 2018, Monthly Notices of the Royal Astronomical Society.
[23] David O. Jones,et al. New Parallaxes of Galactic Cepheids from Spatially Scanning the Hubble Space Telescope: Implications for the Hubble Constant , 2018, 1801.01120.
[24] M. Lattanzi,et al. Status of Neutrino Properties and Future Prospects—Cosmological and Astrophysical Constraints , 2017, Front. Phys..
[25] K. Koyama,et al. Self-accelerating universe in scalar-tensor theories after GW170817 , 2017, 1712.06556.
[26] H. Rix,et al. An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5 , 2017, Nature.
[27] L. Amendola,et al. Fate of Large-Scale Structure in Modified Gravity After GW170817 and GRB170817A. , 2017, Physical review letters.
[28] C. Reichardt,et al. Imprints of gravitational lensing in the Planck cosmic microwave background data at the location of WISE×SCOS galaxies , 2017, Physical Review D.
[29] T. Treu,et al. The Universe Is Reionizing at z ∼ 7: Bayesian Inference of the IGM Neutral Fraction Using Lyα Emission from Galaxies , 2017, 1709.05356.
[30] B. Yanny,et al. Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing , 2017, Physical Review D.
[31] R. Nichol,et al. Dark Energy Survey Year 1 results: Cosmological constraints from cosmic shear , 2017, Physical Review D.
[32] Karl Glazebrook,et al. KiDS-450 + 2dFLenS: Cosmological parameter constraints from weak gravitational lensing tomography and overlapping redshift-space galaxy clustering , 2017, 1707.06627.
[33] C. A. Oxborrow,et al. Planck intermediate results , 2017, Astronomy & Astrophysics.
[34] Edwin Valentijn,et al. KiDS+GAMA : cosmology constraints from a joint analysis of cosmic shear, galaxy-galaxy lensing, and angular clustering , 2017, 1706.05004.
[35] K. Ganga,et al. Cosmological constraints from a joint analysis of cosmic microwave background and spectroscopic tracers of the large-scale structure , 2017, Monthly Notices of the Royal Astronomical Society.
[36] D. Spergel,et al. Planck Sunyaev–Zel’dovich cluster mass calibration using Hyper Suprime-Cam weak lensing , 2017, 1706.00434.
[37] A. Myers,et al. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: First measurement of baryon acoustic oscillations between redshift 0.8 and 2.2 , 2017, 1705.06373.
[38] Shaun A. Thomas,et al. Cosmology and Fundamental Physics with the Euclid Satellite , 2012, Living Reviews in Relativity.
[39] C. A. Oxborrow,et al. Planck 2013 results. , 2018 .
[40] C. A. Oxborrow,et al. Planck intermediate results. LV. The Planck Multi-frequency Catalogue of Non-thermal Sources , 2018 .
[41] C. A. Oxborrow,et al. Detection of velocity dispersion from the kinetic Sunyaev-Zeldovich effect , 2018 .
[42] A. Abbott. Hungary rewards highly cited scientists with bonus grants , 2017, Nature.
[43] C. Steidel,et al. One Percent Determination of the Primordial Deuterium Abundance , 2017, 1710.11129.
[44] R. Bouwens,et al. The Dearth of z ∼ 10 Galaxies in All HST Legacy Fields—The Rapid Evolution of the Galaxy Population in the First 500 Myr , 2017, 1710.11131.
[45] P. Ferreira,et al. Strong Constraints on Cosmological Gravity from GW170817 and GRB 170817A. , 2017, Physical review letters.
[46] F. Vernizzi,et al. Dark Energy after GW170817 and GRB170817A. , 2017, Physical review letters.
[47] B. Jain,et al. Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories. , 2017, Physical review letters.
[48] J. Ezquiaga,et al. Dark Energy After GW170817: Dead Ends and the Road Ahead. , 2017, Physical review letters.
[49] Texas Tech University,et al. Multi-messenger observations of a binary neutron star merger , 2017, 1710.05833.
[50] J. K. Blackburn,et al. A gravitational-wave standard siren measurement of the Hubble constant , 2017, Nature.
[51] D. Schneider,et al. Baryon acoustic oscillations from the complete SDSS-III Ly$\alpha$-quasar cross-correlation function at $z=2.4$ , 2017, 1708.02225.
[52] B. Garilli,et al. The VIMOS Public Extragalactic Redshift Survey (VIPERS): The growth of structure at $0.5 < z < 1.2$ from redshift-space distortions in the clustering of the PDR-2 final sample , 2016, 1612.05645.
[53] Adrian T. Lee,et al. Measurements of the Temperature and E-mode Polarization of the CMB from 500 Square Degrees of SPTpol Data , 2017, 1707.09353.
[54] Michael Boylan-Kolchin,et al. Small-Scale Challenges to the ΛCDM Paradigm , 2017, 1707.04256.
[55] S. Jha,et al. Measuring the Hubble constant with Type Ia supernovae as near-infrared standard candles , 2017, 1707.00715.
[56] Adrian T. Lee,et al. A Comparison of Cosmological Parameters Determined from CMB Temperature Power Spectra from the South Pole Telescope and the Planck Satellite , 2017, 1706.10286.
[57] David N. Spergel,et al. Two-season Atacama Cosmology Telescope polarimeter lensing power spectrum , 2017 .
[58] K. Ganga,et al. Cosmological constraints from a joint analysis of cosmic microwave background and large-scale structure , 2017 .
[59] P. Schneider,et al. KiDS-450: The tomographic weak lensing power spectrum and constraints on cosmological parameters , 2017, 1706.02892.
[60] A. Gilbert,et al. A Measurement of the Cosmic Microwave Background B-mode Polarization Power Spectrum at Subdegree Scales from Two Years of polarbear Data , 2017, 1705.02907.
[61] Adrian T. Lee,et al. A Comparison of Maps and Power Spectra Determined from South Pole Telescope and Planck Data , 2017, 1704.00884.
[62] M. Sereno,et al. PSZ2LenS. Weak lensing analysis of the Planck clusters in the CFHTLenS and in the RCSLenS , 2017, 1703.06886.
[63] Konrad Kuijken,et al. KiDS-450: tomographic cross-correlation of galaxy shear with Planck lensing , 2017, 1703.03383.
[64] D. Schneider,et al. Measurement of BAO correlations at $z=2.3$ with SDSS DR12 \lya-Forests , 2017, 1702.00176.
[65] D. Scolnic,et al. Testing ΛCDM at the lowest redshifts with SN Ia and galaxy velocities , 2016, 1611.09862.
[66] Peter A. R. Ade,et al. The Atacama Cosmology Telescope: two-season ACTPol spectra and parameters , 2016, Journal of Cosmology and Astroparticle Physics.
[67] U. Seljak,et al. Cosmological constraints from thermal Sunyaev-Zeldovich power spectrum revisited , 2016, 1609.01850.
[68] W. M. Wood-Vasey,et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample , 2016, 1607.03155.
[69] G. Meylan,et al. H0LiCOW - V. New COSMOGRAIL time delays of HE 0435-1223: H0 to 3.8 per cent precision from strong lensing in a flat ΛCDM model , 2016, 1607.01790.
[70] J. Brownstein,et al. Cross-correlating Planck CMB lensing with SDSS: Lensing-lensing and galaxy-lensing cross-correlations , 2016, 1606.08841.
[71] J. Aumont,et al. Planck intermediate results L. Evidence of spatial variation of the polarized thermal dust spectral energy distribution and implications for CMB B-mode analysis , 2016, 1606.07335.
[72] P. Schneider,et al. KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing , 2016, 1606.05338.
[73] I. McGreer,et al. Lyα emission-line reconstruction for high-z QSOs , 2016, 1605.09388.
[74] A. Slosar,et al. Measurement of a Cosmographic Distance Ratio with Galaxy and Cosmic Microwave Background Lensing. , 2016, Physical review letters.
[75] C. A. Oxborrow,et al. Planck intermediate results. LIII. Detection of velocity dispersion from the kinetic Sunyaev-Zeldovich effect , 2017 .
[76] A. Slosar,et al. Measurement of baryon acoustic oscillation correlations at z = 2 . 3 with SDSS DR 12 Ly α-Forests , 2017 .
[77] J. Aumont,et al. Planck intermediate results LII. Planet flux densities , 2016, 1612.07151.
[78] Peter G. Martin,et al. Modelling and simulation of large-scale polarized dust emission over the southern Galactic cap using the GASS HI data , 2016, 1611.02418.
[79] J. Lesgourgues,et al. Physical effects involved in the measurements of neutrino masses with future cosmological data , 2016, 1610.09852.
[80] C. A. Oxborrow,et al. Planck 2015 results - VII. High Frequency Instrument data processing: Time-ordered information and beams , 2015, 1502.01586.
[81] E. Hivon,et al. QuickPol: Fast calculation of effective beam matrices for CMB polarization , 2016, 1608.08833.
[82] J. Bartlett,et al. Calibrating the Planck Cluster Mass Scale with CLASH , 2016, 1608.05356.
[83] B. Keating,et al. Planck Lensing and Cosmic Infrared Background Cross-correlation with Fermi-LAT: Tracing Dark Matter Signals in the Gamma-Ray Background , 2016, 1608.04351.
[84] C. A. Oxborrow,et al. Planck intermediate results. LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters , 2016, 1608.02487.
[85] David N. Spergel,et al. First detection of cosmic microwave background lensing and Lyman-α forest bispectrum , 2016 .
[86] S. Pastor,et al. Relic neutrino decoupling with flavour oscillations revisited , 2016, 1606.06986.
[87] G. W. Pratt,et al. Planck intermediate results - XLV. Radio spectra of northern extragalactic radio sources , 2016, 1606.05120.
[88] Z. Haiman,et al. Are we witnessing the epoch of reionisation at $z=7.1$ from the spectrum of J1120+0641? , 2016, 1606.00441.
[89] C. A. Oxborrow,et al. Planck intermediate results - XLVII. Planck constraints on reionization history , 2016, 1605.03507.
[90] C. A. Oxborrow,et al. Planck intermediate results. XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth , 2016, 1605.02985.
[91] Brad E. Tucker,et al. A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT , 2016, 1604.01424.
[92] T. Kitching,et al. CFHTLenS and RCSLenS Cross-Correlation with Planck Lensing Detected in Fourier and Configuration Space , 2016, 1603.07723.
[93] D. Scott,et al. The information content of cosmic microwave background anisotropies , 2016, 1603.03550.
[94] D. Spergel,et al. Kinematic Sunyaev-Zel'dovich Effect with Projected Fields: A Novel Probe of the Baryon Distribution with Planck, WMAP, and WISE Data. , 2016, Physical review letters.
[95] The Ligo Scientific Collaboration,et al. Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.
[96] F. Schmidt,et al. Dark Energy vs. Modified Gravity , 2016, 1601.06133.
[97] R. W. Ogburn,et al. Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band. , 2016, Physical review letters.
[98] R. Nichol,et al. Cross-correlation of gravitational lensing from DES Science Verification data with SPT and Planck lensing , 2015, 1512.04535.
[99] M. McQuinn. The Evolution of the Intergalactic Medium , 2015, 1512.00086.
[100] Naoyuki Tamura,et al. The Subaru FMOS galaxy redshift survey (FastSound). IV. New constraint on gravity theory from redshift space distortions at z ∼ 1.4 , 2015, 1511.08083.
[101] Matthew Colless,et al. The 6dF Galaxy Survey: bulk flows on 50-70 h(-1) Mpc scales , 2015, 1511.06930.
[102] Shirley Ho,et al. Constraining gravity at the largest scales through CMB lensing and galaxy velocities , 2015, 1511.04457.
[103] A. Myers,et al. Updated measurements of the dark matter halo masses of obscured quasars with improved WISE and Planck data , 2015, 1511.04469.
[104] G. W. Pratt,et al. Planck 2015 results Special feature Planck 2015 results XII . Full focal plane simulations , 2016 .
[105] S. Hilbert,et al. Cosmology and astrophysics from relaxed galaxy clusters - IV. Robustly calibrating hydrostatic masses with weak lensing , 2015, 1509.02162.
[106] J. E. Carlstrom,et al. CMB lensing tomography with the DES Science Verification galaxies , 2015, Monthly Notices of the Royal Astronomical Society.
[107] N. Okabe,et al. LoCuSS: weak-lensing mass calibration of galaxy clusters , 2015, 1507.04493.
[108] G. W. Pratt,et al. Planck 2015 results - XI. CMB power spectra, likelihoods, and robustness of parameters , 2015, 1507.02704.
[109] C. A. Oxborrow,et al. Planck 2015 results. XXV. Diffuse low-frequency Galactic foregrounds , 2015, 1506.06660.
[110] C. A. Oxborrow,et al. Planck intermediate results. XXXVIII. E- and B-modes of dust polarization from the magnetized filamentary structure of the interstellar medium , 2015, 1505.02779.
[111] C. A. Oxborrow,et al. Planck intermediate results. XXXVII. Evidence of unbound gas from the kinetic Sunyaev-Zeldovich effect , 2015, 1504.03339.
[112] C. A. Oxborrow,et al. Planck 2015 results. IX. Diffuse component separation: CMB maps , 2015, 1502.05956.
[113] G. W. Pratt,et al. Planck intermediate results. XXXV. Probing the role of the magnetic field in the formation of structure in molecular clouds , 2015, 1502.04123.
[114] G. W. Pratt,et al. Planck 2015 results Special feature Planck 2015 results VIII . High Frequency Instrument data processing : Calibration and maps , 2016 .
[115] C. A. Oxborrow,et al. Planck 2015 results. XV. Gravitational lensing , 2015, 1502.01591.
[116] C. A. Oxborrow,et al. Planck 2015 results Special feature Planck 2015 results XIV . Dark energy and modified gravity , 2016 .
[117] G. W. Pratt,et al. Planck 2015 results - X. Diffuse component separation: Foreground maps , 2015, 1502.01588.
[118] R. B. Barreiro,et al. Planck 2015 results - XXII. A map of the thermal Sunyaev-Zeldovich effect , 2015, 1502.01596.
[119] G. W. Pratt,et al. Planck intermediate results - XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes , 2014, 1409.5738.
[120] Andrei Mesinger,et al. Understanding the Epoch of Cosmic Reionization , 2016 .
[121] A. Mesinger. Understanding the epoch of cosmic reionization : challenges and progress , 2016 .
[122] J. Bolton,et al. Reionisation and High-Redshift Galaxies: The View from Quasar Absorption Lines , 2015, Publications of the Astronomical Society of Australia.
[123] Saul Perlmutter,et al. Blind analysis: Hide results to seek the truth , 2015, Nature.
[124] L. Lombriser,et al. Breaking a dark degeneracy with gravitational waves , 2015, 1509.08458.
[125] B. Altieri,et al. Planck’s dusty GEMS: The brightest gravitationally lensed galaxies discovered with the Planck all-sky survey , 2015 .
[126] J. Peek,et al. Neutral Hydrogen Structures Trace Dust Polarization Angle: Implications for Cosmic Microwave Background Foregrounds. , 2015, Physical review letters.
[127] G. W. Pratt,et al. Planck intermediate results - XXXIX. The Planck list of high-redshift source candidates , 2015, 1508.04171.
[128] G. W. Pratt,et al. Planck2015 results: XXVI. The SecondPlanckCatalogue of Compact Sources , 2015, 1507.02058.
[129] R. Patterson,et al. Prospects for Measurement of the Neutrino Mass Hierarchy , 2015, 1506.07917.
[130] J. Lesgourgues,et al. Neutrino masses and cosmology with Lyman-alpha forest power spectrum , 2015, 1506.05976.
[131] Jia Liu,et al. Cross-correlation of Planck CMB lensing and CFHTLenS galaxy weak lensing maps , 2015, 1504.05598.
[132] R. B. Barreiro,et al. Planck intermediate results XXVII. High-redshift infrared galaxy overdensity candidates and lensed sources discovered by Planck and confirmed by Herschel-SPIRE , 2015, 1503.08773.
[133] R. Bouwens,et al. REIONIZATION AFTER PLANCK: THE DERIVED GROWTH OF THE COSMIC IONIZING EMISSIVITY NOW MATCHES THE GROWTH OF THE GALAXY UV LUMINOSITY DENSITY , 2015, 1503.08228.
[134] K. Olive,et al. The effects of He I λ10830 on helium abundance determinations , 2015, 1503.08146.
[135] P. A. R. Ade,et al. MEASUREMENTS OF SUB-DEGREE B-MODE POLARIZATION IN THE COSMIC MICROWAVE BACKGROUND FROM 100 SQUARE DEGREES OF SPTPOL DATA , 2015, 1503.02315.
[136] G. Holder,et al. Cross-Correlation of CFHTLenS Galaxy Number Density and Planck CMB Lensing , 2015, 1502.03405.
[137] G. W. Pratt,et al. Planck 2015. XX. Constraints on inflation , 2015, 1502.02114.
[138] C. A. Oxborrow,et al. Planck 2015 results. XVIII. Background geometry & topology , 2015, 1502.01593.
[139] C. A. Oxborrow,et al. Planck2015 results , 2015, Astronomy & Astrophysics.
[140] C. A. Oxborrow,et al. Planck 2015 results Special feature Planck 2015 results XXVII . The second Planck catalogue of Sunyaev-Zeldovich sources , 2016 .
[141] G. W. Pratt,et al. XXIV. Cosmology from Sunyaev-Zeldovich cluster counts , 2015, 1502.01597.
[142] A. G. Vieregg,et al. BICEP2/KECK ARRAY V: MEASUREMENTS OF B-MODE POLARIZATION AT DEGREE ANGULAR SCALES AND 150 GHz BY THE KECK ARRAY , 2015, 1502.00643.
[143] Adam D. Myers,et al. Cosmological implications of baryon acoustic oscillation measurements , 2014, 1411.1074.
[144] M. Regis,et al. EVIDENCE OF CROSS-CORRELATION BETWEEN THE CMB LENSING AND THE γ-RAY SKY , 2014, 1410.4997.
[145] S. Dye,et al. CROSS-CORRELATION BETWEEN THE CMB LENSING POTENTIAL MEASURED BY PLANCK AND HIGH-z SUBMILLIMETER GALAXIES DETECTED BY THE HERSCHEL-ATLAS SURVEY , 2014, 1410.4502.
[146] G. W. Pratt,et al. Planck intermediate results XXXII. The relative orientation between the magnetic field and structures traced by interstellar dust , 2014, 1409.6728.
[147] W. Percival,et al. The clustering of the SDSS main galaxy sample – II. Mock galaxy catalogues and a measurement of the growth of structure from redshift space distortions at z = 0.15 , 2014, 1409.3238.
[148] Ashley J. Ross,et al. The clustering of the SDSS DR7 Main Galaxy Sample I: a 4 per cent distance measure at z=0.15 , 2014, 1409.3242.
[149] A. Hopkins,et al. Inferring the redshift distribution of the cosmic infrared background , 2014, 1407.0031.
[150] T. Prabhu,et al. H0 from ten well-measured time delay lenses , 2014, 1404.2920.
[151] P. A. R. Ade,et al. A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND GRAVITATIONAL LENSING POTENTIAL FROM 100 SQUARE DEGREES OF SPTPOL DATA , 2014, 1412.4760.
[152] A. Myers,et al. Weighing obscured and unobscured quasar hosts with the cosmic microwave background , 2014, 1411.0527.
[153] C. A. Oxborrow,et al. Planck 2013 results. XXXI. Consistency of the Planck data , 2014, 1508.03375.
[154] James G. Bartlett,et al. Measuring cluster masses with CMB lensing: a statistical approach , 2014, 1408.5633.
[155] M. Lueker,et al. A MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES FROM THE 2500 SQUARE-DEGREE SPT-SZ SURVEY , 2014, 1408.3161.
[156] Mark Trodden,et al. Beyond the Cosmological Standard Model , 2014, 1407.0059.
[157] Sergey E. Koposov,et al. Balancing mass and momentum in the Local Group , 2014, 1405.3662.
[158] G. W. Pratt,et al. Planck intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust , 2014, 1405.0871.
[159] Bonn,et al. Robust weak-lensing mass calibration of Planck galaxy clusters , 2014, 1402.2670.
[160] Scott Croom,et al. The WiggleZ Dark Energy Survey: improved distance measurements to z = 1 with reconstruction of the baryonic acoustic feature , 2014, 1401.0358.
[161] Takahiro Nishimichi,et al. Simultaneous constraints on the growth of structure and cosmic expansion from the multipole power spectra of the SDSS DR7 LRG sample , 2013, 1310.2820.
[162] M. Kamionkowski,et al. Effect of aberration on partial-sky measurements of the cosmic microwave background temperature power spectrum , 2013, 1309.2285.
[163] C. A. Oxborrow,et al. Planck 2013 results. XXX. Cosmic infrared background measurements and implications for star formation , 2013, 1309.0382.
[164] G. W. Pratt,et al. Planck 2013 results. XXII. Constraints on inflation , 2013, 1303.5082.
[165] R. B. Barreiro,et al. Planck 2013 results. V. LFI calibration , 2013, 1303.5066.
[166] G. W. Pratt,et al. Planck 2013 results. XVII. Gravitational lensing by large-scale structure , 2013, 1303.5077.
[167] C. A. Oxborrow,et al. Planck2013 results. VI. High Frequency Instrument data processing , 2013, Astronomy & Astrophysics.
[168] C. A. Oxborrow,et al. Planck 2015 results. I. Overview of products and scientific results , 2015 .
[169] G. W. Pratt,et al. Planck2013 results. XXIX. ThePlanckcatalogue of Sunyaev-Zeldovich sources , 2013, Astronomy & Astrophysics.
[170] C. A. Oxborrow,et al. Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.
[171] C. A. Oxborrow,et al. Planck 2015 results: XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation , 2015, 1509.06555.
[172] C. A. Oxborrow,et al. Planck 2013 results - VIII. HFI photometric calibration and mapmaking , 2013, 1303.5069.
[173] G. W. Pratt,et al. Planck 2015 results - XVII. Constraints on primordial non-Gaussianity , 2014 .
[174] G. W. Pratt,et al. Planck 2013 results Special feature Planck 2013 results . XXV . Searches for cosmic strings and other topological defects , 2014 .
[175] G. W. Pratt,et al. Planck 2013 results. XVIII. The gravitational lensing-infrared background correlation , 2013, 1303.5078.
[176] C. A. Oxborrow,et al. Planck2013 results. XII. Diffuse component separation , 2013, Astronomy & Astrophysics.
[177] David N. Spergel,et al. The Atacama Cosmology Telescope: temperature and gravitational lensing power spectrum measurements from three seasons of data , 2013, 1301.1037.
[178] R. B. Barreiro,et al. Low Frequency Instrument data processing , 2014 .
[179] A. Hopkins,et al. Galaxy And Mass Assembly (GAMA): improved cosmic growth measurements using multiple tracers of large-scale structure , 2013, 1309.5556.
[180] M. Lueker,et al. A DIRECT MEASUREMENT OF THE LINEAR BIAS OF MID-INFRARED-SELECTED QUASARS AT z ≈ 1 USING COSMIC MICROWAVE BACKGROUND LENSING , 2013, 1307.1706.
[181] C. Burgess,et al. String inflation after Planck 2013 , 2013, 1306.3512.
[182] H. Aussel,et al. The redshift evolution of the distribution of star formation among dark matter halos as seen in the infrared , 2013, 1304.3936.
[183] F. Atrio-Barandela. On the Statistical Significance of the Bulk Flow Measured by the PLANCK Satellite , 2013, 1303.6614.
[184] C. A. Oxborrow,et al. Planck 2013 results. XXVII. Doppler boosting of the CMB: Eppur si muove , 2013, 1303.5087.
[185] G. W. Pratt,et al. Planck intermediate results - XIII. Constraints on peculiar velocities , 2013, 1303.5090.
[186] R. B. Barreiro,et al. Planck 2013 results. IV. Low Frequency Instrument beams and window functions , 2013, 1303.5065.
[187] R. B. Barreiro,et al. Planck 2015 results. II. Low Frequency Instrument data processings , 2013, 1502.01583.
[188] G. W. Pratt,et al. Astronomy & Astrophysics manuscript no. planck˙isw c ○ ESO 2013 , 2013 .
[189] M. Lueker,et al. A COSMIC MICROWAVE BACKGROUND LENSING MASS MAP AND ITS CORRELATION WITH THE COSMIC INFRARED BACKGROUND , 2013, 1303.5048.
[190] J. Lesgourgues,et al. Neutrino Cosmology by Julien Lesgourgues , 2013 .
[191] Edward J. Wollack,et al. NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.
[192] Edward J. Wollack,et al. NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS , 2012, 1212.5225.
[193] P. P. van der Werf,et al. H-ATLAS: THE COSMIC ABUNDANCE OF DUST FROM THE FAR-INFRARED BACKGROUND POWER SPECTRUM , 2012, 1212.2211.
[194] Jacques Delabrouille,et al. A needlet ILC analysis of WMAP 9-year polarization data: CMB polarization power spectra , 2012, 1204.0292.
[195] Adam G. Riess,et al. Observational probes of cosmic acceleration , 2012, 1201.2434.
[196] C. A. Oxborrow,et al. Planck intermediate results - XI. The gas content of dark matter halos: the Sunyaev-Zeldovich-stellar mass relation for locally brightest galaxies , 2012, 1212.4131.
[197] Douglas Scott,et al. A UNIFIED EMPIRICAL MODEL FOR INFRARED GALAXY COUNTS BASED ON THE OBSERVED PHYSICAL EVOLUTION OF DISTANT GALAXIES , 2012, 1208.6512.
[198] H. Nguyen,et al. HerMES: COSMIC INFRARED BACKGROUND ANISOTROPIES AND THE CLUSTERING OF DUSTY STAR-FORMING GALAXIES , 2012, 1208.5049.
[199] R. B. Barreiro,et al. Planck intermediate results - X. Physics of the hot gas in the Coma cluster , 2012, 1208.3611.
[200] Wendy L. Freedman,et al. CARNEGIE HUBBLE PROGRAM: A MID-INFRARED CALIBRATION OF THE HUBBLE CONSTANT , 2012, 1208.3281.
[201] Takahiro Nishimichi,et al. REVISING THE HALOFIT MODEL FOR THE NONLINEAR MATTER POWER SPECTRUM , 2012, 1208.2701.
[202] W. M. Wood-Vasey,et al. THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.
[203] R. B. Barreiro,et al. Planck intermediate results VII. Statistical properties of infrared and radio extragalactic sources from the Planck Early Release Compact Source Catalogue at frequencies between 100 and 857 GHz , 2012, 1207.4706.
[204] G. W. Pratt,et al. Planck intermediate results: V. Pressure profiles of galaxy clusters from the Sunyaev-Zeldovich effect , 2012, 1207.4061.
[205] R. B. Barreiro,et al. Planck intermediate results - IV. The XMM-Newton validation programme for new Planck galaxy clusters , 2012, 1205.3376.
[206] Will Saunders,et al. The 6dF Galaxy Survey: z \approx 0 measurement of the growth rate and sigma_8 , 2012, 1204.4725.
[207] Scott Croom,et al. The WiggleZ Dark Energy Survey: joint measurements of the expansion and growth history at z < 1 , 2012, 1204.3674.
[208] R. B. Barreiro,et al. Planck intermediate results - III. The relation between galaxy cluster mass and Sunyaev-Zeldovich signal , 2012, 1204.2743.
[209] D. Finkbeiner,et al. Searching for dark matter in the CMB: A compact parametrization of energy injection from new physics , 2011, 1109.6322.
[210] G. W. Pratt,et al. Planck intermediate results , 2012, Astronomy & Astrophysics.
[211] Jean-Francois Cardoso,et al. Foreground component separation with generalised ILC , 2011, 1103.1166.
[212] R. Sunyaev,et al. The evolution of CMB spectral distortions in the early Universe , 2011, 1109.6552.
[213] Z. Haiman,et al. Improved models for cosmic infrared background anisotropies: new constraints on the infrared galaxy population , 2011, 1109.1522.
[214] Matthew Colless,et al. The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant , 2011, 1106.3366.
[215] P. Vielva,et al. Multiresolution internal template cleaning: an application to the Wilkinson Microwave Anisotropy Probe 7-yr polarization data , 2011, 1106.2016.
[216] G. W. Pratt,et al. Planck early results. XXVI. Detection with Planck and confirmation by XMM-Newton of PLCK G266.6–27.3, an exceptionally X-ray luminous and massive galaxy cluster at z ~ 1 , 2011, 1106.1376.
[217] Rick Chartrand,et al. Numerical Differentiation of Noisy, Nonsmooth Data , 2011 .
[218] Stefano Casertano,et al. A 3% SOLUTION: DETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE AND WIDE FIELD CAMERA 3 , 2011, 1103.2976.
[219] R. B. Barreiro,et al. Planck early results. XV. Spectral energy distributions and radio continuum spectra of northern extragalactic radio sources , 2011, 1101.2047.
[220] R. B. Barreiro,et al. Planck early results - X. Statistical analysis of Sunyaev-Zeldovich scaling relations for X-ray galaxy clusters , 2011, 1101.2043.
[221] R. B. Barreiro,et al. Planck early results Special feature Planck early results . XI . Calibration of the local galaxy cluster Sunyaev-Zeldovich scaling relations , 2011 .
[222] R. B. Barreiro,et al. Planck early results. XVIII. The power spectrum of cosmic infrared background anisotropies , 2011, 1101.2028.
[223] R. B. Barreiro,et al. Planckearly results. VII. The Early Release Compact Source Catalogue , 2011, Astronomy & Astrophysics.
[224] G. W. Pratt,et al. Planck early results Special feature Planck early results . VIII . The all-sky early Sunyaev-Zeldovich cluster sample , 2011 .
[225] C. B. Netterfield,et al. Planck early results - I. The Planck mission , 2011, 1101.2022.
[226] R. B. Barreiro,et al. Planck early results. XIII. Statistical properties of extragalactic radio sources in the Planck Early Release Compact Source Catalogue , 2011, 1101.2044.
[227] R. B. Barreiro,et al. Planck early results. XVI. The Planck view of nearby galaxies , 2011, 1101.2045.
[228] R. B. Barreiro,et al. Planckearly results. XII. Cluster Sunyaev-Zeldovich optical scaling relations , 2011, Astronomy & Astrophysics.
[229] R. B. Barreiro,et al. Planck early results. XIV. ERCSC validation and extreme radio sources , 2011, 1101.1721.
[230] D. Elbaz,et al. Submillimetre galaxies reside in dark matter haloes with masses greater than 3 × 1011 solar masses , 2011, Nature.
[231] M. Halpern,et al. SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP ) OBSERVATIONS: ARE THERE COSMIC MICROWAVE BACKGROUND ANOMALIES? , 2010, 1001.4758.
[232] Edward J. Wollack,et al. SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2011 .
[233] James J. Bock,et al. Planck Pre-Launch Status: The Planck Mission , 2010 .
[234] B. Jain,et al. Cosmological Tests of Gravity , 2010, 1004.3294.
[235] Jayaram N. Chengalur,et al. Thick gas discs in faint dwarf galaxies , 2010, 1002.4474.
[236] A. Lewis,et al. Weak lensing of the CMB , 2009, 0911.0612.
[237] Alexander S. Szalay,et al. Cosmological constraints from the clustering of the Sloan Digital Sky Survey DR7 luminous red galaxies (vol 404, pg 60, 2010) , 2009, 0907.1659.
[238] W. Dehnen,et al. Local kinematics and the local standard of rest , 2009, 0912.3693.
[239] D. J. Fixsen,et al. THE TEMPERATURE OF THE COSMIC MICROWAVE BACKGROUND , 2009, 0911.1955.
[240] Andrew R. Liddle,et al. The Primordial Density Perturbation , 2009 .
[241] James J. Bock,et al. BLAST: CORRELATIONS IN THE COSMIC FAR-INFRARED BACKGROUND AT 250, 350, AND 500 μm REVEAL CLUSTERING OF STAR-FORMING GALAXIES , 2009, 0904.1200.
[242] R. B. Partridge,et al. Finding the Big Bang , 2009 .
[243] D. Kocevski,et al. A Measurement of Large-Scale Peculiar Velocities of Clusters of Galaxies: Results and Cosmological Implications , 2008, 0809.3734.
[244] J. Zibin,et al. Gauging the cosmic microwave background , 2008, 0808.2047.
[245] E. Leitch,et al. SECOND AND THIRD SEASON QUaD COSMIC MICROWAVE BACKGROUND TEMPERATURE AND POLARIZATION POWER SPECTRA , 2008, 0805.1944.
[246] R. B. Barreiro,et al. Component separation methods for the PLANCK mission , 2008, 0805.0269.
[247] Edward J. Wollack,et al. Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, & Basic Results , 2008, 0803.0732.
[248] Edward J. Wollack,et al. FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.
[249] A. Melchiorri,et al. Testing cosmology with cosmic sound waves , 2007, 0711.4119.
[250] H. K. Eriksen,et al. Joint Bayesian Component Separation and CMB Power Spectrum Estimation , 2007, 0709.1058.
[251] T. Rodet,et al. Correlated Anisotropies in the Cosmic Far-Infrared Background Detected by the Multiband Imaging Photometer for Spitzer: Constraint on the Bias , 2007, 0707.2443.
[252] D. Kocevski,et al. Our Peculiar Motion Away from the Local Void , 2007, 0705.4139.
[253] M. Kunz,et al. Dark energy versus modified gravity. , 2006, Physical review letters.
[254] G. Smoot,et al. Power spectrum analysis of far-IR background fluctuations in 160 μm maps from the multiband imaging photometer for Spitzer , 2006, astro-ph/0604512.
[255] D. Eisenstein,et al. On the Robustness of the Acoustic Scale in the Low-Redshift Clustering of Matter , 2006, astro-ph/0604361.
[256] J. Bartlett,et al. Archeops in-flight performance, data processing, and map making , 2006, Astronomy & Astrophysics.
[257] S. Furlanetto,et al. Cosmology at low frequencies: The 21 cm transition and the high-redshift Universe , 2006, astro-ph/0608032.
[258] G. Efstathiou. Hybrid estimation of cosmic microwave background polarization power spectra , 2006 .
[259] Edward J. Wollack,et al. Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Temperature Analysis , 2006, astro-ph/0603451.
[260] Edward J. Wollack,et al. Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.
[261] G. Rieke,et al. The Cosmic Infrared Background Resolved by Spitzer. Contributions of Mid-Infrared Galaxies to the Far-Infrared Background. , 2006, astro-ph/0603208.
[262] A. Lewis,et al. Weak gravitational lensing of the CMB , 2006, astro-ph/0601594.
[263] G. Efstathiou. Hybrid Estimation of CMB Polarization Power Spectra , 2006, astro-ph/0601107.
[264] A. Melchiorri,et al. A Measurement of the Angular Power Spectrum of the CMB Temperature Anisotropy from the 2003 Flight of BOOMERANG , 2005, astro-ph/0507494.
[265] J.,et al. The Dipole Observed in the COBE DMR Four-Year Data , 2006 .
[266] V. Mukhanov. Physical Foundations of Cosmology , 2005 .
[267] Aaron Roodman,et al. Blind Analysis in Nuclear and Particle Physics , 2005 .
[268] A. Melchiorri,et al. Indication for primordial anisotropies in the neutrino background from the Wilkinson microwave anisotropy probe and the Sloan digital sky survey. , 2005, Physical Review Letters.
[269] N. Padmanabhan,et al. Detecting dark matter annihilation with CMB polarization: Signatures and experimental prospects , 2005, astro-ph/0503486.
[270] K. Gorski,et al. HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.
[271] L. Knox,et al. Effect of Hot Baryons on the Weak-Lensing Shear Power Spectrum , 2004, astro-ph/0409198.
[272] Daniel J. Eisenstein Martin White. Theoretical uncertainty in baryon oscillations , 2004, astro-ph/0407539.
[273] M. White. Baryons and weak lensing power spectra , 2004, astro-ph/0405593.
[274] R. Nichol,et al. The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey , 2003, astro-ph/0310725.
[275] M. Kamionkowski,et al. Particle decays during the cosmic dark ages , 2003, astro-ph/0310473.
[276] J. Bond,et al. Polarization Observations with the Cosmic Background Imager , 2001, Science.
[277] J. Richard Bond,et al. Cosmic microwave background snapshots: pre-WMAP and post-WMAP , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[278] M. Halpern,et al. First Year Wilkinson Microwave Anisotropy Probe Observations: Dark Energy Induced Correlation with Radio Sources , 2003, The Astrophysical Journal.
[279] M. Roncadelli. Searching for dark matter , 2003, astro-ph/0307115.
[280] M. Zaldarriaga,et al. The Far-Infrared Background Correlation with Cosmic Microwave Background Lensing , 2003 .
[281] M. Halpern,et al. SUBMITTED TO The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 11/12/01 FIRST YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: INTERPRETATION OF THE TT AND TE ANGULAR POWER SPECTRUM PEAKS , 2022 .
[282] Edward J. Wollack,et al. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.
[283] B. Jain,et al. Last stand before WMAP: Cosmological parameters from lensing, CMB, and galaxy clustering , 2002, astro-ph/0212417.
[284] M. Kamionkowski,et al. Aspects of the cosmic microwave background dipole , 2002, astro-ph/0210165.
[285] U. Seljak,et al. Analyzing weak lensing of the cosmic microwave background using the likelihood function , 2002, astro-ph/0209489.
[286] Elizabeth Waldram,et al. First results from the Very Small Array — III. The cosmic microwave background power spectrum , 2002, astro-ph/0205380.
[287] M. Bersanelli,et al. Anisotropies of the Cosmic Microwave Background , 2002, astro-ph/0209215.
[288] J. Carlstrom,et al. Cosmology with the Sunyaev-Zel'dovich Effect , 2002, astro-ph/0208192.
[289] Wayne Hu,et al. Mass Reconstruction with Cosmic Microwave Background Polarization , 2002 .
[290] Max Tegmark,et al. Separating the early universe from the late universe: Cosmological parameter estimation beyond the black box , 2002, astro-ph/0207047.
[291] J. Bond,et al. The Anisotropy of the Microwave Background to l = 3500: Mosaic Observations with the Cosmic Background Imager , 2002, astro-ph/0205388.
[292] G. Miele,et al. A precision calculation of the effective number of cosmological neutrinos , 2001, astro-ph/0111408.
[293] J. Puchalla,et al. The QMAP and MAT/TOCO Experiments for Measuring Anisotropy in the Cosmic Microwave Background , 2001, astro-ph/0108030.
[294] R. Durrer,et al. Acoustic Peaks and Dips in the Cosmic Microwave Background Power Spectrum: Observational Data and Cosmological Constraints , 2001, astro-ph/0111594.
[295] Wayne Hu,et al. Mass Reconstruction with Cosmic Microwave Background Polarization , 2001, astro-ph/0111606.
[296] A. Melchiorri,et al. Multiple Peaks in the Angular Power Spectrum of the Cosmic Microwave Background: Significance and Consequences for Cosmology , 2001, astro-ph/0105296.
[297] Caltech,et al. PUBLISHED IN THE ASTROPHYSICAL JOURNAL, 568, 38 Preprint typeset using L ATEX style emulateapj v. 14/09/00 DASI FIRST RESULTS: A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND ANGULAR , 2002 .
[298] A. Melchiorri,et al. A Measurement by BOOMERANG of Multiple Peaks in the Angular Power Spectrum of the Cosmic Microwave Background , 2001, astro-ph/0104460.
[299] C. Will. The Confrontation between General Relativity and Experiment , 2001, Living reviews in relativity.
[300] Princeton University,et al. Probing Early Structure Formation with Far-Infrared Background Correlations , 2000, astro-ph/0009151.
[301] James J. Bock,et al. Constraints on Cosmological Parameters from MAXIMA-1 , 2000 .
[302] H. Matsuhara,et al. ISO deep far-infrared survey in the "Lockman Hole" II. Power spectrum analysis: evidence of a stro , 2000, astro-ph/0006444.
[303] G. Lagache,et al. Implications of the cosmic infrared background for light production and the star formation history in the Universe , 2000, astro-ph/0005554.
[304] V. V. Hristov,et al. MAXIMA-1: A Measurement of the Cosmic Microwave Background Anisotropy on Angular Scales of 10'-5° , 2000, astro-ph/0005123.
[305] A. Melchiorri,et al. A flat Universe from high-resolution maps of the cosmic microwave background radiation , 2000, Nature.
[306] M. Roos,et al. How flat is the Universe , 2000, astro-ph/0003040.
[307] L. Page,et al. Characterizing the peak in the cosmic microwave background angular power spectrum , 2000, Physical review letters.
[308] G. Puget. Detection of the extra-Galactic background fluctuations at 170 mu m , 1999, astro-ph/9910255.
[309] S. Courteau,et al. The Solar Motion Relative to the Local Group , 1999, astro-ph/9903298.
[310] J. Peacock,et al. Baryonic signatures in Large-Scale Structure , 1998, astro-ph/9812214.
[311] I. Hook,et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.
[312] A. G. Alexei,et al. OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT , 1998 .
[313] A. Riess,et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.
[314] Wayne Hu,et al. Structure Formation with Generalized Dark Matter , 1998, astro-ph/9801234.
[315] Wayne Hu,et al. Baryonic Features in the Matter Transfer Function , 1997, astro-ph/9709112.
[316] E. L. Wright,et al. The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background. IV. Cosmological Implications , 1997, astro-ph/9806129.
[317] Matias Zaldarriaga,et al. Cosmic Microwave Background Polarization as a Direct Test of Inflation , 1997, astro-ph/9705182.
[318] A. Hamilton. Linear redshift distortions: A Review , 1997, astro-ph/9708102.
[319] W. White. A CMB polarization primer , 1997, astro-ph/9706147.
[320] M. Kamionkowski,et al. Statistics of cosmic microwave background polarization , 1996, astro-ph/9611125.
[321] U. Seljak,et al. An all sky analysis of polarization in the microwave background , 1996, astro-ph/9609170.
[322] Uros Seljak,et al. Measuring Polarization in the Cosmic Microwave Background , 1996, astro-ph/9608131.
[323] Wayne Hu,et al. Distinguishing Causal Seeds from Inflation , 1996, astro-ph/9605193.
[324] J. Binney,et al. Mass models of the Milky Way , 1996, astro-ph/9612059.
[325] E. L. Wright,et al. The Cosmic Microwave Background Spectrum from the Full COBE FIRAS Data Set , 1996, astro-ph/9605054.
[326] W. B. Burton,et al. TENTATIVE DETECTION OF A COSMIC FAR-INFRARED BACKGROUND WITH COBE , 1996 .
[327] J. Peacock,et al. Non-linear evolution of cosmological power spectra , 1996, astro-ph/9603031.
[328] White,et al. A New Test of Inflation. , 1996, Physical review letters.
[329] M. White,et al. Acoustic Signatures in the Cosmic Microwave Background , 1996, astro-ph/9602019.
[330] E. L. Wright,et al. Four-Year COBE DMR Cosmic Microwave Background Observations: Maps and Basic Results , 1996, astro-ph/9601067.
[331] M. White,et al. Cold dark matter models with a cosmological constant , 1995, astro-ph/9512102.
[332] U. Seljak. Gravitational Lensing Effect on Cosmic Microwave Background Anisotropies: A Power Spectrum Approach , 1995, astro-ph/9505109.
[333] R. B. Partridge,et al. 3 K: The Cosmic Microwave Background Radiation: Cosmology , 1995 .
[334] Crittenden,et al. Doppler peaks from cosmic texture. , 1995, Physical review letters.
[335] White,et al. Effect of physical assumptions on the calculation of microwave background anisotropies. , 1995, Physical review. D, Particles and fields.
[336] Douglas Scott,et al. From Microwave Anisotropies to Cosmology , 1995, Science.
[337] L. Krauss,et al. The cosmological constant is back , 1995, astro-ph/9504003.
[338] Paul J. Steinhardt,et al. The observational case for a low-density Universe with a non-zero cosmological constant , 1995, Nature.
[339] N. Turok,et al. Microwave anisotropies from cosmic defects , 1993, Nature.
[340] L. Krauss. CMB anisotropies two years after COBE: observations, theory and the future , 1994 .
[341] A. Banday,et al. Dipole Anisotropy in the COBE Differential Microwave Radiometers First-Year Sky Maps , 1993 .
[342] J. Peacock,et al. Power spectrum analysis of three-dimensional redshift surveys , 1993, astro-ph/9304022.
[343] G. Hinshaw,et al. Structure in the COBE differential microwave radiometer first-year maps , 1992 .
[344] J. Bond,et al. COBE Background radiation anisotropies and large scale structure in the universe , 1992 .
[345] Turner,et al. Tilted Universe and other remnants of the preinflationary Universe. , 1991, Physical review. D, Particles and fields.
[346] S. Maddox,et al. The cosmological constant and cold dark matter , 1990, Nature.
[347] David Burstein,et al. Spectroscopy and photometry of elliptical galaxies. V - Galaxy streaming toward the new supergalactic center , 1988 .
[348] V. Rubin,et al. Large-scale motions in the universe : a Vatican study week , 1988 .
[349] J. Silk,et al. Scale-invariant density perturbations, anisotropy of the cosmic microwave background, and large-scale peculiar velocity field , 1985 .
[350] P. Peebles. Tests of Cosmological Models Constrained by Inflation , 1984 .
[351] C. G. T. Haslam,et al. A 408 MHz all-sky continuum survey. II. The atlas of contour maps. , 1982 .
[352] R. Rifkin. Information content. , 1981, Circulation.
[353] Y. Zel’dovich,et al. Fluctuations of the microwave background radiation in the adiabatic and entropic theories of galaxy formation , 1978 .
[354] A. Sandage,et al. The Local Group: the solar motion relative to its centroid. , 1977 .
[355] Y. Zel’dovich,et al. The velocity of clusters of galaxies relative to the microwave background. The possibility of its measurement , 1980 .
[356] Y. Zeldovich,et al. The Observations of relic radiation as a test of the nature of X-Ray radiation from the clusters of galaxies , 1972 .
[357] Y. Zeldovich,et al. Small-scale fluctuations of relic radiation , 1970, Astrophysics and Space Science.
[358] P. Peebles,et al. Primeval Adiabatic Perturbation in an Expanding Universe , 1970 .
[359] G. Dautcourt,et al. The Cosmic Blackbody Radiation , 1968, 1968.
[360] R. Sachs,et al. Perturbations of a Cosmological Model and Angular Variations of the Microwave Background , 1967 .
[361] P. J. E. Peebles,et al. Cosmic Black-Body Radiation , 1965 .
[362] A. Penzias,et al. A Measurement of excess antenna temperature at 4080-Mc/s , 1965 .