Chapter 11 – Highly Nonlinear Fibers

[1]  K. Kikuchi,et al.  Bismuth-oxide-based nonlinear fiber with a high SBS threshold and its application to four-wave-mixing wavelength conversion using a pure continuous-wave pump , 2006, Journal of Lightwave Technology.

[2]  P. Petropoulos,et al.  High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-/spl mu/m pumped supercontinuum generation , 2006, Journal of Lightwave Technology.

[3]  M. Koshiba,et al.  Numerical modeling of photonic crystal fibers , 2005, Journal of Lightwave Technology.

[4]  H. Sotobayashi,et al.  Highly nonlinear bismuth-oxide fiber for supercontinuum generation and femtosecond pulse compression , 2005, Journal of Lightwave Technology.

[5]  D. Moss,et al.  Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber. , 2005, Optics express.

[6]  S. Leon-Saval,et al.  Hole inflation and tapering of stock photonic crystal fibres. , 2005, Optics express.

[7]  T A Birks,et al.  Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser. , 2005, Optics letters.

[8]  Periklis Petropoulos,et al.  Extruded singlemode, high-nonlinearity, tellurite glass holey fibre , 2005 .

[9]  B. Eggleton,et al.  Tapered photonic crystal fibres: properties, characterisation and applications , 2005 .

[10]  A. K. Mairaj,et al.  Nonsilica glasses for holey fibers , 2005, Journal of Lightwave Technology.

[11]  A. Zheltikov Gaussian-mode analysis of waveguide-enhanced Kerr-type nonlinearity of optical fibers and photonic wires , 2005 .

[12]  Kazuro Kikuchi,et al.  All-fiber 80-Gbit/s wavelength converter using 1-m-long Bismuth Oxide-based nonlinear optical fiber with a nonlinearity gamma of 1100 W-1km-1. , 2005, Optics express.

[13]  Simultaneous measurement of the Raman gain coefficient and the nonlinear refractive index of optical fibers: theory and experiment , 2005 .

[14]  K. Tajima,et al.  Ultrawide-band single-mode transmission performance in a low-loss photonic crystal fiber , 2005, Journal of Lightwave Technology.

[15]  Alexander Gaeta,et al.  Ultra-low threshold supercontinuum generation in sub-wavelength waveguides. , 2004, Optics express.

[16]  S. Leon-Saval,et al.  Supercontinuum generation in submicron fibre waveguides. , 2004, Optics express.

[17]  Alexander Gaeta,et al.  Optimal waveguide dimensions for nonlinear interactions. , 2004, Optics express.

[18]  Jasbinder S. Sanghera,et al.  Large Raman gain and nonlinear phase shifts in high-purity As 2 Se 3 chalcogenide fibers , 2004 .

[19]  Harald Giessen,et al.  Group velocity dispersion of tapered fibers immersed in different liquids. , 2004, Optics express.

[20]  Limin Tong,et al.  Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. , 2004, Optics express.

[21]  B. Eggleton,et al.  Tapered photonic crystal fibers. , 2004, Optics express.

[22]  W. Knox,et al.  Generation of a broadband continuum with high spectral coherence in tapered single-mode optical fibers , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[23]  A highly nonlinear dispersion‐shifted fiber with 9.3 μm2 effective area and low loss for all fiber wavelength converter , 2004 .

[24]  Heike Ebendorff-Heidepriem,et al.  Highly nonlinear and anomalously dispersive lead silicate glass holey fibers. , 2003, Optics express.

[25]  P. Russell,et al.  Tellurite photonic crystal fiber. , 2003, Optics express.

[26]  M. Koshiba,et al.  Structural dependence of effective area and mode field diameter for holey fibers. , 2003, Optics express.

[27]  H. Giessen,et al.  Characteristics of supercontinuum generationin tapered fibers using femtosecond laser pulses , 2003 .

[28]  David J. Richardson,et al.  Small-core silica holey fibers: nonlinearity and confinement loss trade-offs , 2003 .

[29]  Kathleen Richardson,et al.  Tellurite glasses with peak absolute Raman gain coefficients up to 30 times that of fused silica. , 2003, Optics letters.

[30]  Takatoshi Kato,et al.  Highly nonlinear and perfectly dispersion-flattened fibres for efficient optical signal processing applications , 2003 .

[31]  C. Headley,et al.  Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers , 2003 .

[32]  P. Russell,et al.  Photonic Crystal Fibers , 2003, Science.

[33]  F. Benabid,et al.  Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber , 2002, Science.

[34]  T A Birks,et al.  Long-wavelength continuum generation about the second dispersion zero of a tapered fiber. , 2002, Optics letters.

[35]  M. Ohashi,et al.  Dopant dependence of effective nonlinear refractive index in GeO2- and F-doped core single-mode fibers , 2002, IEEE Photonics Technology Letters.

[36]  T. Brown,et al.  Multipole analysis of hole-assisted optical fibers , 2002 .

[37]  N. Mortensen Effective area of photonic crystal fibers. , 2002, Optics express.

[38]  K. Taira,et al.  Highly nonlinear bismuth oxide-based glass fibres for all-optical signal processing , 2002 .

[39]  B. Eggleton,et al.  Microstructured optical fiber devices. , 2001, Optics express.

[40]  R. McPhedran,et al.  Confinement losses in microstructured optical fibers. , 2001, Optics letters.

[41]  T A Birks,et al.  Miniature all-fiber devices based on CO(2) laser microstructuring of tapered fibers. , 2001, Optics letters.

[42]  A. Martínez-Ríos,et al.  Influence of the symmetry rules for Raman susceptibility on the accuracy of nonlinear index measurements in optical fibers , 2001 .

[43]  M. Ohashi,et al.  Universal conditions for estimating the nonlinear refractive index n2 of dispersion-compensating fibers by the CW-SPM method , 2001, IEEE Photonics Technology Letters.

[44]  T. Brown,et al.  Analysis of the space filling modes of photonic crystal fibers. , 2001, Optics express.

[45]  David J. Richardson,et al.  Chalcogenide holey fibres , 2000 .

[46]  William J. Wadsworth,et al.  Supercontinuum generation in tapered fibers. , 2000, Optics letters.

[47]  N. Gisin,et al.  Determination of nonlinear coefficient n2/Aeff using self-aligned interferometer and Faraday mirror , 2000 .

[48]  Dominique Pagnoux,et al.  Complete Analysis of the Characteristics of Propagation into Photonic Crystal Fibers, by the Finite Element Method , 2000 .

[49]  S Spälter,et al.  Large Kerr effect in bulk Se-based chalcogenide glasses. , 2000, Optics letters.

[50]  D. Richardson,et al.  Modeling large air fraction holey optical fibers , 2000, Journal of Lightwave Technology.

[51]  T A Birks,et al.  Carbon dioxide laser fabrication of fused-fiber couplers and tapers. , 1999, Applied optics.

[52]  D. Richardson,et al.  Nonlinearity in holey optical fibers: measurement and future opportunities. , 1999, Optics letters.

[53]  Kathleen Richardson,et al.  Non-linear optical properties of chalcogenide glasses in the system As–S–Se , 1999 .

[54]  Sylvia Smolorz,et al.  Studies of optical non-linearities of chalcogenide and heavy-metal oxide glasses , 1999 .

[55]  Knight,et al.  Single-Mode Photonic Band Gap Guidance of Light in Air. , 1999, Science.

[56]  M. Nishimura,et al.  Silica-based functional fibers with enhanced nonlinearity and their applications , 1999 .

[57]  S Smolorz,et al.  Measurement of the nonlinear optical response of optical fiber materials by use of spectrally resolved two-beam coupling. , 1999, Optics letters.

[58]  A. Bjarklev,et al.  Photonic Crystal Fibers: A New Class of Optical Waveguides , 1999 .

[59]  A. Melloni,et al.  Phase noise insensitive measurements of the nonlinear refractive index in fiber links , 1999 .

[60]  C. Mazzali,et al.  Simple method for measuring dispersion and nonlinear coefficient near the zero dispersion wavelength of optical fibers , 1999, IEEE Photonics Technology Letters.

[61]  P. Andrés,et al.  Full-vector analysis of a realistic photonic crystal fiber. , 1998, Optics Letters.

[62]  Andrea Melloni,et al.  Frequency Characterization of the Nonlinear Refractive Index in Optical Fiber , 1999 .

[63]  T A Birks,et al.  Group-velocity dispersion in photonic crystal fibers. , 1998, Optics letters.

[64]  S. Namiki,et al.  Broadband lossless DCF using Raman amplification pumped by multichannel WDM laser diodes , 1998 .

[65]  D. Monzón-Hernández,et al.  Continuous-wave measurement of the fiber nonlinear refractive index. , 1998, Optics letters.

[66]  W. A. Reed,et al.  Measurement of the nonlinear refractive index of long dispersion-shifted fibers by self-phase modulation at 1.55 /spl mu/m , 1998 .

[67]  Lars Gruner-Nielsen,et al.  Raman amplification for loss compensation in dispersion compensating fibre modules , 1998 .

[68]  D. Milam Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica. , 1998, Applied optics.

[69]  M. Nishimura,et al.  Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber , 1998, IEEE Photonics Technology Letters.

[70]  M Martinelli,et al.  Measurement of the frequency response induced by electrostriction in optical fibers. , 1997, Optics letters.

[71]  M. Artiglia,et al.  COST 241 intercomparison of nonlinear refractive index measurements in dispersion shifted optical fibres at /spl lambda/=1550 nm , 1997 .

[72]  R. Boyd,et al.  Measurement of the frequency response of the electrostrictive nonlinearity in optical fibers. , 1997, Optics letters.

[73]  Masaki Asobe,et al.  Nonlinear Optical Properties of Chalcogenide Glass Fibers and Their Application to All-Optical Switching , 1997 .

[74]  Direct measurement of nonlinear refractive index with an all-fibre Sagnac interferometer , 1997 .

[75]  S. V. Chernikov,et al.  Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 μm , 1996 .

[76]  D. M. Atkin,et al.  All-silica single-mode optical fiber with photonic crystal cladding. , 1996, Optics letters.

[77]  J R Taylor,et al.  Measurement of normalization factor of n(2) for random polarization in optical fibers. , 1996, Optics letters.

[78]  R W Boyd,et al.  Electrostrictive contribution to the intensity-dependent refractive index of optical fibers. , 1996, Optics letters.

[79]  Optical irradiation method for fiber coupler fabrications , 1997 .

[80]  F. Cisternino,et al.  A New Method for the Measurement of the Nonlinear Refractive Index of Optical Fiber , 1996 .

[81]  Ryozo Yamauchi,et al.  Geo2 concentration dependence of nonlinear refractive index coefficients of silica‐based optical fibers , 1996 .

[82]  T. Kato,et al.  Estimation of nonlinear refractive index in various silica-based glasses for optical fibers. , 1995, Optics letters.

[83]  Frank W. Wise,et al.  Femtosecond measurement of enhanced optical nonlinearities of sulfide glasses and heavy-metal-doped oxide glasses , 1995 .

[84]  Using modulation instability to determine Kerr coefficient in optical fibres , 1995 .

[85]  T. Kato,et al.  Measurement of the nonlinear refractive index in optical fiber by the cross-phase-modulation method with depolarized pump light. , 1995, Optics letters.

[86]  E. M. Vogel,et al.  Tellurite glass: a new candidate for fiber devices , 1994 .

[87]  Yoshinori Namihira,et al.  Nonlinear coefficient measurements for dispersion shifted fibres using self-phase modulation method at 1.55 µm , 1994 .

[88]  Toshio Morioka,et al.  Nearly penalty-free, <4 ps supercontinuum Gbit/s pulse generation over 1535-1560 nm , 1994 .

[89]  W A Reed,et al.  Measurement of the nonlinear index of silica-core and dispersion-shifted fibers. , 1994, Optics letters.

[90]  G I Stegeman,et al.  Enhanced self-phase modulation in tapered fibers. , 1993, Optics letters.

[91]  J.-P. Hamaide,et al.  Measurement of fiber nonlinear Kerr coefficient by four-wave mixing , 1993, IEEE Photonics Technology Letters.

[92]  Masaki Asobe,et al.  Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches , 1993 .

[93]  Masaki Asobe,et al.  Nonlinear refractive index measurement in chalcogenide‐glass fibers by self‐phase modulation , 1992 .

[94]  Enhanced-nonlinearity single-mode lead silicate optical fiber. , 1990, Optics letters.

[95]  M. Monerie,et al.  Direct interferometric measurement of nonlinear refractive index of optical fibres by crossphase modulation , 1987 .

[96]  Lloyd L. Chase,et al.  Nonlinear refractive-index measurements of glasses using three-wave frequency mixing , 1987 .

[97]  D. C. Johnson,et al.  Fused biconical tapered fiber-optic devices: Application to data buses , 1980 .

[98]  M. J. Weber,et al.  Nonlinear Refractive Index of Glasses and Crystals , 1978 .

[99]  A. Owyoung,et al.  Empirical relationships for predicting nonlinear refractive index changes in optical solids , 1978 .

[100]  Chinlon Lin,et al.  Self-phase modulation in silica optical fibers (A) , 1978 .

[101]  D. Milam,et al.  Measurement of nonlinear refractive‐index coefficients using time‐resolved interferometry: Application to optical materials for high‐power neodymium lasers , 1976 .

[102]  A. Owyoung,et al.  Ellipse rotation studies in laser host materials , 1973 .

[103]  Adelbert Owyoung,et al.  Intensity-Induced Changes in Optical Polarizations in Glasses , 1972 .