Atmospheric pressure plasma jets: an overview of devices and new directions

Atmospheric pressure plasma jets have a long history of more than 50 years. During this time their design and plasma generation mechanism has been developed and adapted to various fields of applications. This review aims at giving an overview of jet devices by starting with a brief history of their development. This is followed by an overview of commonly used terms and definitions as well as a survey of different classification schemes (e.g. geometry, excition frequency or specific energy input) described in literature. A selective update of new designs and novel research achievments on atmospheric pressure plasma jets published in 2012 or later shows the impressive variety and rapid development of the field. Finally, a brief outlook on the future trends and directions is given.

[1]  Steffen Brinckmann,et al.  Photons and particles emitted from cold atmospheric-pressure plasma inactivate bacteria and biomolecules independently and synergistically , 2013, Journal of The Royal Society Interface.

[2]  Weidong Zhu,et al.  A dc non-thermal atmospheric-pressure plasma microjet , 2012 .

[3]  V. Puech,et al.  On atmospheric-pressure non-equilibrium plasma jets and plasma bullets , 2012 .

[4]  C. Kieda,et al.  ROS implication in a new antitumor strategy based on non‐thermal plasma , 2012, International journal of cancer.

[5]  K. Weltmann,et al.  Tracking plasma generated H2O2 from gas into liquid phase and revealing its dominant impact on human skin cells , 2014 .

[6]  Karl H. Schoenbach,et al.  Microplasmas and applications , 2006 .

[7]  K. Weltmann,et al.  Feed gas humidity: a vital parameter affecting a cold atmospheric-pressure plasma jet and plasma-treated human skin cells , 2013 .

[8]  K. Weltmann,et al.  Observation of microwave volume plasma ignition in ambient air , 2012 .

[9]  R. Morent,et al.  Deposition of a TMDSO-based film by a non-equilibrium atmospheric pressure DC plasma jet , 2013 .

[10]  Eric Robert,et al.  Characterization of pulsed atmospheric-pressure plasma streams (PAPS) generated by a plasma gun , 2012 .

[11]  Gregor E. Morfill,et al.  Plasma medicine: an introductory review , 2009 .

[12]  Tomoyuki Murakami,et al.  Chemical kinetics and reactive species in atmospheric pressure helium–oxygen plasmas with humid-air impurities , 2012 .

[13]  P. Bruggeman,et al.  Electron properties and air mixing in radio frequency driven argon plasma jets at atmospheric pressure , 2013 .

[14]  S. Reuter,et al.  Atomic nitrogen: a parameter study of a micro-scale atmospheric pressure plasma jet by means of molecular beam mass spectrometry , 2014 .

[15]  J. Pouvesle,et al.  Rare gas flow structuration in plasma jet experiments , 2014 .

[16]  Martin Polak,et al.  Low temperature atmospheric pressure plasma sources for microbial decontamination , 2011 .

[17]  H. Störi,et al.  Plasma Sheath Dynamics in Dielectric Barrier-Free Atmospheric Pressure Radio-Frequency Glow Discharges , 2009 .

[18]  James L. Walsh,et al.  Microplasmas: sources, particle kinetics, and biomedical applications , 2008 .

[19]  M. Kushner,et al.  Dynamics of ionization wave splitting and merging of atmospheric-pressure plasmas in branched dielectric tubes and channels , 2012 .

[20]  P. Bruggeman,et al.  Corrigendum: Power dissipation, gas temperatures and electron densities of cold atmospheric pressure helium and argon RF plasma jets , 2011 .

[21]  U. Stroth,et al.  Spectroscopic Investigation of a Microwave‐Generated Atmospheric Pressure Plasma Torch , 2012 .

[22]  K. Weltmann,et al.  Atomic oxygen in a cold argon plasma jet: TALIF spectroscopy in ambient air with modelling and measurements of ambient species diffusion , 2012 .

[23]  Cheng Cheng,et al.  Characterization of a steam plasma jet at atmospheric pressure , 2012 .

[24]  K. Schoenbach,et al.  Low temperature, atmospheric pressure, direct current microplasma jet operated in air, nitrogen and oxygen , 2010 .

[25]  Xuechen Li,et al.  A brush-shaped air plasma jet operated in glow discharge mode at atmospheric pressure , 2014 .

[26]  D. Schröder,et al.  Characteristics of a propagating, self-pulsing, constricted ‘γ-mode-like’ discharge , 2015 .

[27]  Stephan Reuter,et al.  Plasmas for medicine , 2013 .

[28]  N. Sadeghi,et al.  Electron properties in an atmospheric helium plasma jet determined by Thomson scattering , 2014 .

[29]  P. Bruggeman,et al.  Numerical analysis of the NO and O generation mechanism in a needle-type plasma jet , 2014 .

[30]  V. J. Law,et al.  Compact atmospheric pressure plasma self-resonant drive circuits , 2012 .

[31]  K. Schoenbach,et al.  Microhollow cathode discharges , 2003 .

[32]  Kostya Ostrikov,et al.  Inactivation of a 25.5 µm Enterococcus faecalis biofilm by a room-temperature, battery-operated, handheld air plasma jet , 2012 .

[33]  P. Bruggeman,et al.  Nitric oxide density distributions in the effluent of an RF argon APPJ: effect of gas flow rate and substrate , 2014 .

[34]  E. Pfender,et al.  Diamond synthesis by DC thermal plasma CVD at 1 atm , 1991 .

[35]  H. Störi,et al.  Recent advances in the research on non-equilibrium atmospheric pressure plasma jets , 2007 .

[36]  J. Ehlbeck,et al.  Modeling of microwave-induced plasma in argon at atmospheric pressure. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  J. Pouvesle,et al.  Experimental Study of a Compact Nanosecond Plasma Gun , 2009 .

[38]  M. Nagatsu,et al.  Effect of Hydrogen Reduction on Characteristics of Cu Thin-Films Deposited by RF-Driven Ar/H2 Atmospheric Pressure Plasma Jet , 2012 .

[39]  K. Weltmann,et al.  On the Use of Atmospheric Pressure Plasma for the Bio-Decontamination of Polymers and Its Impact on Their Chemical and Morphological Surface Properties , 2012, Plasma Chemistry and Plasma Processing.

[40]  Chun Huang,et al.  The growth of organosilicon film using a hexamethyldisilazane/oxygen atmospheric pressure plasma jet , 2013 .

[41]  P. Ambrico,et al.  LIF and fast imaging plasma jet characterization relevant for NTP biomedical applications , 2014 .

[42]  E. Garcia-Caurel,et al.  Experimentally obtained values of electric field of an atmospheric pressure plasma jet impinging on a dielectric surface , 2013 .

[43]  J. Hnilica,et al.  Time-resolved study of amplitude modulation effects in surface-wave atmospheric pressure argon plasma jet , 2014 .

[44]  C. Leys,et al.  Direct current plasma jet at atmospheric pressure operating in nitrogen and air , 2013 .

[45]  Chenzhong Dong,et al.  Nonequilibrium atmospheric pressure plasma jet using a combination of 50 kHz/2 MHz dual-frequency power sources , 2013 .

[46]  K. Weltmann,et al.  Detection of ozone in a MHz argon plasma bullet jet , 2012 .

[47]  Yuan Pan,et al.  An $RC$ Plasma Device for Sterilization of Root Canal of Teeth , 2009, IEEE Transactions on Plasma Science.

[48]  P. Bruggeman,et al.  Absolute OH density measurements in the effluent of a cold atmospheric-pressure Ar–H2O RF plasma jet in air , 2013 .

[49]  S. Kasuya,et al.  Novel method for C60 synthesis: A thermal plasma at atmospheric pressure , 1992 .

[50]  T. Murakami,et al.  Interacting kinetics of neutral and ionic species in an atmospheric-pressure helium–oxygen plasma with humid air impurities , 2013 .

[51]  G. Bauville,et al.  Arrays of microplasmas for the controlled production of tunable high fluxes of reactive oxygen species at atmospheric pressure , 2013 .

[52]  S. Reuter,et al.  Optical Diagnostics of Micro Discharge Jets , 2007 .

[53]  Pascal Tristant,et al.  Atmospheric pressure plasmas: A review , 2006 .

[54]  E. Hotta,et al.  Study on Plasma Agent Effect of a Direct-Current Atmospheric Pressure Oxygen-Plasma Jet on Inactivation of E. coli Using Bacterial Mutants , 2013, IEEE Transactions on Plasma Science.

[55]  V. S. Gathen,et al.  Enhanced oxygen dissociation in a propagating constricted discharge formed in a self-pulsing atmospheric pressure microplasma jet , 2013 .

[56]  R. Brandenburg,et al.  On the spatio-temporal dynamics of a self-pulsed nanosecond transient spark discharge: a spectroscopic and electrical analysis , 2013 .

[57]  Masa-aki Suzuki,et al.  Arc-Heated Magnetically-Trapped Expanding Plasma Jet Generator , 1993 .

[58]  Jean-Pierre Boeuf,et al.  Dynamics of a guided streamer (‘plasma bullet’) in a helium jet in air at atmospheric pressure , 2013 .

[59]  A. Bogaerts,et al.  Effect of Argon or Helium on the CO2 Conversion in a Dielectric Barrier Discharge , 2015 .

[60]  K. Weltmann,et al.  Reactive species output of a plasma jet with a shielding gas device—combination of FTIR absorption spectroscopy and gas phase modelling , 2014 .

[61]  A. Rousseau,et al.  The influence of the geometry and electrical characteristics on the formation of the atmospheric pressure plasma jet , 2014 .

[62]  Mounir Laroussi,et al.  Arc-Free Atmospheric Pressure Cold Plasma Jets: A Review , 2007 .

[63]  A. Schmidt-Bleker,et al.  The spatio-temporal distribution of He (23S1) metastable atoms in a MHz-driven helium plasma jet is influenced by the oxygen/nitrogen ratio of the surrounding atmosphere , 2015 .

[64]  Jiaxing Li,et al.  Steam Plasma Jet Treatment of Phenol in Aqueous Solution at Atmospheric Pressure , 2012, ICOPS 2012.

[65]  M. Moisan,et al.  A new HF device for the production of long plasma columns at a high electron density , 1974 .

[66]  R. Snyders,et al.  Influence of air diffusion on the OH radicals and atomic O distribution in an atmospheric Ar (bio)plasma jet , 2014 .

[67]  Dong Wook Kim,et al.  Synthesis of nanocrystalline magnesium nitride (Mg3N2) powder using thermal plasma , 2011 .

[68]  Ladislav Bardos,et al.  Cold atmospheric plasma: Sources, processes, and applications , 2010 .

[69]  P. Bruggeman,et al.  NO production in an RF plasma jet at atmospheric pressure , 2013 .

[70]  Mohammed Yousfi,et al.  Optical emission spectroscopy for quantification of ultraviolet radiations and biocide active species in microwave argon plasma jet at atmospheric pressure , 2013 .

[71]  R. Gesche,et al.  Integrated Microwave Atmospheric Plasma Source (IMAPlaS): thermal and spectroscopic properties and antimicrobial effect on B. atrophaeus spores , 2012 .

[72]  I. Jõgi,et al.  The influence of the tube diameter on the properties of an atmospheric pressure He micro-plasma jet , 2014 .

[73]  Saskia Müller,et al.  Spatially resolved spectroscopic measurements of a dielectric barrier discharge plasma jet applicable for soft ionization , 2011 .

[74]  Michel Moisan,et al.  A Small Microwave Plasma Source for Long Column Production without Magnetic Field , 1975, IEEE Transactions on Plasma Science.

[75]  R. Hippler,et al.  Study of thin Film Formation From Silicon‐Containing Precursors Produced by an RF Non‐Thermal Plasma Jet at Atmospheric Pressure , 2012 .

[76]  F. Iza,et al.  The effect of applied electric field on pulsed radio frequency and pulsed direct current plasma jet array , 2012 .

[77]  Kow-Ming Chang,et al.  Using SiOx nano-films to enhance GZO Thin films properties as front electrodes of a-Si solar cells , 2013 .

[78]  P. Bruggeman,et al.  Transitions Between and Control of Guided and Branching Streamers in DC Nanosecond Pulsed Excited Plasma Jets , 2012, IEEE Transactions on Plasma Science.

[79]  T. von Woedtke,et al.  Plasma Processes and Plasma Sources in Medicine , 2012 .

[80]  N. Braithwaite,et al.  Power coupling and electrical characterization of a radio-frequency micro atmospheric pressure plasma jet , 2014 .

[81]  J. Lackmann,et al.  The Role of VUV Radiation in the Inactivation of Bacteria with an Atmospheric Pressure Plasma Jet , 2011, 1105.6260.

[82]  T. von Woedtke,et al.  Antimicrobial Effects of UV and VUV Radiation of Nonthermal Plasma Jets , 2009, IEEE Transactions on Plasma Science.

[83]  Jaeyoung Park,et al.  The atmospheric-pressure plasma jet: a review and comparison to other plasma sources , 1998 .

[84]  A. Fridman Plasma Chemistry: Frontmatter , 2008 .

[85]  M. Janda,et al.  The streamer-to-spark transition in a transient spark: a dc-driven nanosecond-pulsed discharge in atmospheric air , 2012 .

[86]  Stephan Reuter,et al.  The Influence of Feed Gas Humidity Versus Ambient Humidity on Atmospheric Pressure Plasma Jet-Effluent Chemistry and Skin Cell Viability , 2015, IEEE Transactions on Plasma Science.

[87]  Y. Horiike,et al.  An atmospheric-pressure microplasma jet source for the optical emission spectroscopic analysis of liquid sample , 2003 .

[88]  H Conrads,et al.  Plasma generation and plasma sources , 2000 .

[89]  Z. Petrović,et al.  Detection of atomic oxygen and nitrogen created in a radio-frequency-driven micro-scale atmospheric pressure plasma jet using mass spectrometry , 2012 .

[90]  Xuechen Li,et al.  Characteristics of an atmospheric-pressure argon plasma jet excited by a dc voltage , 2013 .

[91]  Jaeyoung Park,et al.  Materials Processing Using an Atmospheric Pressure, RF-Generated Plasma Source , 2001 .

[92]  PECVD of nanostructured SiO2 in a modulated microwave plasma jet at atmospheric pressure , 2013 .

[93]  T. von Woedtke,et al.  Atmospheric-pressure plasma sources: Prospective tools for plasma medicine , 2010 .

[94]  E. Wagenaars,et al.  Two-photon absorption laser-induced fluorescence measurements of atomic nitrogen in a radio-frequency atmospheric-pressure plasma jet , 2012 .

[95]  K. Weltmann,et al.  Aspects of UV-absorption spectroscopy on ozone in effluents of plasma jets operated in air , 2012 .

[96]  D. Dowling,et al.  Resonances and patterns within the kINPen-MED atmospheric pressure plasma jet , 2013 .

[97]  P. Bruggeman,et al.  Time and spatial resolved optical and electrical characteristics of continuous and time modulated RF plasmas in contact with conductive and dielectric substrates , 2014 .

[98]  Juergen F. Kolb,et al.  Cold atmospheric pressure air plasma jet for medical applications , 2008 .

[99]  Kazuaki Kurihara,et al.  High rate synthesis of diamond by dc plasma jet chemical vapor deposition , 1988 .

[100]  F. Judée,et al.  The antibacterial activity of a microwave argon plasma jet at atmospheric pressure relies mainly on UV-C radiations , 2014 .

[101]  Ronny Brandenburg,et al.  Atmospheric pressure discharge filaments and microplasmas: physics, chemistry and diagnostics , 2013 .

[102]  K. Weltmann,et al.  Scar formation of laser skin lesions after cold atmospheric pressure plasma (CAP) treatment: A clinical long term observation , 2013 .

[103]  R. Ono,et al.  Flux of OH and O radicals onto a surface by an atmospheric-pressure helium plasma jet measured by laser-induced fluorescence , 2014 .

[104]  A. Kanitz,et al.  Impurity intrusion in radio-frequency micro-plasma jets operated in ambient air , 2011, 1105.0833.

[105]  O. Eichwald,et al.  Inactivation of Gram-positive biofilms by low-temperature plasma jet at atmospheric pressure , 2012 .

[106]  J. Kolb,et al.  Cold DC-Operated Air Plasma Jet for the Inactivation of Infectious Microorganisms , 2012, IEEE Transactions on Plasma Science.

[107]  K. Weltmann,et al.  Phase-resolved measurement of electric charge deposited by an atmospheric pressure plasma jet on a dielectric surface , 2014 .

[108]  M. P. Freeman A quantitative examination of the LTE condition in the effluent of an atmospheric pressure argon plasma jet , 1968 .

[109]  M. Kushner,et al.  Interaction of multiple atmospheric-pressure micro-plasma jets in small arrays: He/O2 into humid air , 2014 .

[110]  J. Kolb,et al.  Discharge Dynamics and Modes of an Atmospheric Pressure Non-Equilibrium Air Plasma Jet , 2013 .

[111]  T. von Woedtke,et al.  Plasma Applications: A Dermatological View , 2014 .

[112]  G. Giannini The Plasma Jet , 1957 .

[113]  A. Bogaerts,et al.  Reaction pathways of biomedically active species in an Ar plasma jet , 2014 .

[114]  M. Dorigo,et al.  Observation of B-s(0) -> K* (+/-) K -/+ and evidence for B-s(0) -> K*(-) pi(+) decays , 2014, 1407.7704.

[115]  P. Bruggeman,et al.  Mechanisms of bacterial inactivation in the liquid phase induced by a remote RF cold atmospheric pressure plasma jet , 2013 .

[116]  M. Teschke,et al.  High-speed photographs of a dielectric barrier atmospheric pressure plasma jet , 2005, IEEE Transactions on Plasma Science.